首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Matt Wilson structure is a circular 5.5 km-diameter structure in Early Mesoproterozoic or Neoproterozoic rocks of the Victoria Basin, Northern Territory. It lies in regionally horizontal to gently dipping Wondoan Hill and Stubb Formations (Tijunna Group) and Jasper Gorge Sandstone (Auvergne Group). An outer circumferential syncline with dips of 5?–?40° in the limbs surrounds an intermediate zone with faulted sandstone displaying horizontal to low dips, and a central steeply dipping zone about 1.5 km across. Several thrust faults in the outer syncline appear to indicate outward-directed forces. The central zone, marked by steeply dipping to overturned Tijunna Group and possibly Bullita Group sandstone and mudstone, indicates uplift of at least 300 m. The rocks are intensely fractured with some brecciation, and contain numerous planar to subtly undulating surfaces displaying striae which resemble shatter cleavage. Thin-sections of sandstone from the central area show zones of intense microbrecciation and irregular and planar fractures in quartz, but no melt-rocks have been identified. The planar fractures occur in multiple intersecting parallel sets typical of relatively low-level (5?–?10 GPa) shock-pressure effects. Alternative mechanisms, i.e. igneous intrusion, carbonate collapse, diapirism and regional deformation processes, have been discounted. The circular nature, central uplift, faulting, shatter features and planar fractures are all consistent with an impact origin. The Matt Wilson structure is most likely a deeply eroded impact structure in which the more highly shocked rocks of the original crater floor have been removed by erosion. Estimates of the age of the Auvergne and Tijunna Groups range from Early Mesoproterozoic (which we favour) to Late Neoproterozoic. Early Cambrian Antrim Plateau Volcanics near the impact structure show no signs of impact effects, allowing the age of impact to be constrained between Early Mesoproterozoic and Early Cambrian. The presence of widespread soft-sediment deformation features, apparently confined to a single horizon in the Saddle Creek Formation some 700?–?1000 m stratigraphically higher in the Auvergne Group than the rocks at the impact site, and apparently increasing in thickness towards the Matt Wilson structure, lead us to speculate that this probable event horizon is related to the impact event: if correct the impact occurred during deposition of the Saddle Creek Formation.  相似文献   

2.
The Wolfe Creek Meteorite Crater is an impact structure 880 m in diameter, located in the Tanami Desert near Halls Creek, Western Australia. The crater formed?<?300 000 years ago, and is the second largest crater from which fragments of the impacting meteorite (a medium octahedrite) have been recovered. We present the results of new ground-based geophysical (magnetics and gravity) surveys conducted over the structure in July?–?August 2003. The results highlight the simple structure of the crater under the infilling sediments, and forward modelling is consistent with the true crater floor being 120 m beneath the present surface. The variations in the dip of the foliations around the crater rim confirm that the meteorite approached from the east-northeast, as is also deduced from the ejecta distribution. Crater scaling arguments suggest a projectile diameter of?>?12.0 m, a crater formation time of 3.34 s, and an energy of impact of ~0.235 Mt of TNT. We also use the distribution of shocked quartz in the target rock (Devonian sandstones) to reconstruct the shock loading conditions of the impact. The estimated maximum pressures at the crater rim were between 5.59 and 5.81 GPa. We also use a Simplified Arbitrary Langrangian–Eulerian hydrocode (SALE 2) to simulate the propagation of shock waves through a material described by a Tillotson equation of state. Using the deformational and PT constraints of the Wolfe Creek crater, we estimate the maximum pressures, and the shock-wave attenuation, of this medium-sized impact.  相似文献   

3.
The Gnargoo structure is located on the Gascoyne Platform, Southern Carnarvon Basin, Western Australia, and is buried beneath about 500 m of Cretaceous and younger strata. The structure is interpreted as being of possible impact origin from major geophysical and morphometric signatures, characteristic of impact deformation, and its remarkable similarities with the proven Woodleigh impact structure, about 275 km to the south on the Gascoyne Platform. These similarities include: a circular Bouguer anomaly (slightly less well-defined at Gnargoo than at Woodleigh); a central structurally uplifted area comprising a buried dome with a central uplifted plug; and the lack of a significant magnetic anomaly. Gnargoo shows a weakly defined inner 10 km-diameter circular Bouguer anomaly surrounded by a broadly circular zone, ~75 km in diameter. The north?–?south Bouguer anomaly lineament of the Giralia Range (a regional topographic and structural feature) terminates abruptly against the outer circular zone which is, in turn, intersected on the eastern flank by the Wandagee Fault. A <?28 km-diameter layered sedimentary dome of Ordovician to Lower Permian strata, surrounding a cone-shaped, central uplift plug of 7?–?10 km diameter, are inferred from the seismic data. Seismic-reflection data indicate a minimum central structural uplift of 1.5 km, as compared to a model uplift of 7.3 km calculated from the outer structural diameter. An interpretation of Gnargoo in terms of a plutonic or volcanic caldera/ring origin is unlikely as these features display less regular geometry, are typically smaller and no volcanic rocks are known in the onshore Gascoyne Platform. An interpretation of Gnargoo as a salt dome is likewise unlikely because salt structures tend to have irregular geometry, and no extensive evaporite units are known in the Southern Carnarvon Basin. Morphometric estimates of the rim-to-rim diameter based on seismic data for the central dome correspond to the observed diameter deduced from gravity data, and fall within the range of morphometric parameters of known impact structures. The age of Gnargoo is constrained between the deformed Lower Permian target rocks and unconformably overlying undeformed Lower Cretaceous strata. Because of its large dimensions, if Gnargoo is an impact structure, it may have influenced an environmental catastrophe during this period.  相似文献   

4.
震裂锥已被公认为陨石冲击地球表面遗留的标志。研究及统计资料表明,震裂锥与陨石冲击形成的中、大型冲击坑 有关。太湖西山震裂锥呈圆锥形,锥体表面有自锥顶向下辐射的锥纹,锥纹具有分叉的特征,这些特征与震裂锥的国际公 认的定义和标准相符。此外,西山震裂锥还具有其特有的其他特征:碎裂岩化显著;气化-熔融现象发育;锥体表面具网 状构造及波纹状、蜂窝状等多种气印。岩相学研究显示,震裂锥及含锥岩石中冲击变质现象明显,微页理(PDFs)、微裂 隙(PFs) 以及靶岩熔融现象发育。以上这些冲击变质的标志,可证明西山震裂锥是冲击成因,而非地表水风化淋溶石灰岩 的喀斯特或风蚀成因的凤稜石。西山震裂锥的发现、太湖湖底冲击击变角砾岩“太湖石”的确定,为太湖冲击坑的研究增 添了新的诊断性证据;加上早期研究确定的、冲击回落至太湖湖底淤泥层中的冲击溅射物,这些众多证据为确定“太湖冲 击坑”或“太湖冲击事件”展示了美好前景。但是,要确定太湖冲击坑的具体位置、大小及构造模式等,尚需更多的深入 研究。  相似文献   

5.
Remote sensing and GIS techniques play a substantial role for the identification of possible terrestrial impact structures, for mapping target-rock lithologies and deciphering the structural style of known craters. In this case study the lithological and structural characteristics of the highly eroded Proterozoic Strangways impact crater in the Northern Territory have been analysed on the basis of Landsat Enhanced Thematic Mapper satellite imagery, topographical data and airborne geophysical data. Regarding Landsat data, the calculation of basic statistical parameters and the optimum index factor has been found useful for a pre-selection of informative band combinations. By means of the analysis of multisensoral data, the distribution of crystalline basement rocks, siliciclastic target rocks of the Roper Group as well as post-impact deposits and deeper seated Proterozoic dykes can be detected. The original crater dimensions of the Strangways structure are carefully estimated at 26?–?29 km by combining the remote sensing data with the distribution of shatter cones localised in the field. The remote sensing/GIS approach of a geological interpretation based on multisensoral sources and combined fieldwork data can be successfully applied to other impact structures on earth, as well.  相似文献   

6.
The Glikson structure is an aeromagnetic and structural anomaly located in the Little Sandy Desert of Western Australia (23°59'S, 121°34′E). Shatter cones and planar microstructures in quartz grains are present in a highly deformed central region, suggesting an impact origin. Circumferential shortening folds and chaotically disposed bedding define a 19 km-diameter area of deformation. Glikson is located in the northwestern Officer Basin in otherwise nearly flat-lying sandstone, siltstone and conglomerate of the Neoproterozoic Mundadjini Formation, intruded by dolerite sills. The structure would not have been detected if not for its strong ring-shaped aeromagnetic anomaly, which has a 10 km inner diameter and a 14 km outer diameter. We interpret the circular magnetic signature as the product of truncation and folding of mafic sills into a ring syncline. The sills most likely correlate with dolerites that intrude the Boondawari Formation ~25 km to the north, for which we report a SHRIMP U?–?Pb baddeleyite and zircon age of 508?±?5 Ma, providing a precise older limit for the impact event that formed the Glikson structure.  相似文献   

7.
The Gulpuliyul structure is the eroded remains of a possible impact structure of Mesoproterozoic age, in western Arnhem Land, Northern Territory, on the Arnhem Shelf of the northwestern McArthur Basin. Enigmatic, highly deformed and brecciated strata, within the roughly circular or pentagonal feature about 8.5 km across, contrast with mildly deformed rocks of the surrounding Arnhem Shelf. Shock-metamorphic features have yet to be observed. Other features of the Gulpuliyul Structure are: (i) sharp and faulted outer boundaries; (ii) strata within the structure are younger than adjacent country rocks; i.e., the rocks have been emplaced downwards into the structure; (iii) outcrops display an overall concentric or tangential pattern, the stratigraphy is essentially coherent, and there is an overall younging from the centre outwards; and (iv) strata are commonly overturned by southward-directed thrusting and recumbent folding. It is suggested that the projectile impacted at a shallow angle from the north, to produce a southward-deepening crater about 8.5 km across. The depth of the transient crater was probably between ~500?–?700 m (minimum) and ~800 m (maximum). The central uplift probably rebounded only about 300?–?400 m. The present erosion level is thought to lie near the top of the low central uplift, at about or just below the floor of the final crater. The age of the possible impact is Mesoproterozoic (ca 1600?–?1325 Ma); it is most likely to have occurred very early in the Mesoproterozoic (1600?–?1500 Ma).  相似文献   

8.
The Pine Creek Orogen, located on the exposed northern periphery of the North Australian Craton, comprises a thick succession of variably metamorphosed Palaeoproterozoic siliciclastic and carbonate sedimentary and volcanic rocks, which were extensively intruded by mafic and granitic rocks. Exposed Neoarchean basement is rare in the Pine Creek Orogen and the North Australian Craton in general. However, recent field mapping, in conjunction with new SHRIMP U–Pb zircon data for six granitic gneiss samples, have identified previously unrecognised Neoarchean crystalline crust in the Nimbuwah Domain, the eastern-most region of the Pine Creek Orogen. Four samples from the Myra Falls and Caramal Inliers, the Cobourg Peninsula, and the Kakadu region have magmatic crystallisation ages in the range 2527–2510 Ma. An additional sample, from northeast Myra Falls Inlier, yielded a magmatic crystallisation age of 2671 ± 3 Ma, the oldest exposed Archean basement yet recognised in the North Australian Craton. These results are consistent with previously determined magmatic ages for known outcropping and subcropping crystalline basement some 200 km to the west. A sixth sample yielded a magmatic crystallisation age of 2640 ± 4 Ma. The ca. 2670 Ma and ca. 2640 Ma samples have ca. 2500 Ma metamorphic zircon rims, consistent with metamorphism broadly coeval with emplacement of the volumetrically dominant ca. 2530–2510 Ma granites and granitic gneisses. Neoarchean zircon detritus, particularly in the ca. 2530–2510 Ma and ca. 2670–2640 Ma age span, are an almost ubiquitous feature of detrital zircon spectra of unconformably overlying metamorphosed Palaeoproterozoic strata of the Pine Creek Orogen, and of local post-tectonic Proterozoic sequences, consistent with this local provenance. Neoarchean zircon is also a common detrital component in Palaeoproterozoic sedimentary units across much of the North Australian Craton suggesting the existence of an extensive, if not contiguous, Neoarchean crystalline basement underlying not only a large part of the Pine Creek Orogen, but also much of the North Australian Craton.  相似文献   

9.
The discovery of the Woodleigh impact structure, first identified by R. P. Iasky, bears a number of parallels with that of the Chicxulub impact structure of K?–?T boundary age, underpinning complications inherent in the study of buried impact structures by geophysical techniques and drilling. Questions raised in connection with the diameter of the Woodleigh impact structure reflect uncertainties in criteria used to define original crater sizes in eroded and buried impact structures as well as limits on the geological controls at Woodleigh. The truncation of the regional Ajana?–?Wandagee gravity ridges by the outer aureole of the Woodleigh structure, a superposed arcuate magnetic anomaly along the eastern part of the structure, seismic-reflection data indicating a central >?37 km-diameter dome, correlation of fault patterns between Woodleigh and less-deeply eroded impact structures (Ries crater, Chesapeake Bay), and morphometric estimates all indicate a final diameter of 120 km. At Woodleigh, pre-hydrothermal shock-induced melting and diaplectic transformations are heavily masked by pervasive alteration of the shocked gneisses to montmorillonite-dominated clays, accounting for the high MgO and low K2O of cryptocrystalline components. The possible contamination of sub-crater levels of the Woodleigh impact structure by meteoritic components, suggested by high Ni, Co, Cr, Ni/Co and Ni/Cr ratios, requires further siderophile element analyses of vein materials. Although stratigraphic age constraints on the impact event are broad (post-Middle Devonian to pre-Early Jurassic) high-temperature (200?–?250°C) pervasive hydrothermal activity dated by K?–?Ar isotopes of illite?–?smectite indicates an age of 359?±?4 Ma. To date neither Late Devonian crater fill, nor impact ejecta fallout units have been identified, although metallic meteoritic ablation spherules of a similar age have been found in the Canning Basin.  相似文献   

10.
11.
The Lawn Hill circular structure in northwest Queensland contains unambiguous evidence of an extraterrestrial impact, including planar deformation features in quartz, impact diamonds, widespread shatter cone formation and impact melt breccia in the Mesoproterozoic basement. The question of its relevance to ore genesis is investigated because the world-class Century Zn – Pb deposit is situated at the conjunction of the 100+ km Termite Range Fault and the previously defined margin of the impact structure. The impact structure is considered to be a 19.5 km wide feature, this constrained in part by the outer margin of an annulus of brecciated and highly contorted limestone. New evidence is presented indicating impact into this Cambrian limestone, including: (i) ‘dykes’ of brecciated Cambrian limestone extending hundreds of metres into the Mesoproterozoic basement; (ii) highly contorted bedding in the limestone annulus compared with essentially undeformed limestone away from the impact site; as well as (iii) a 1 Mt megaclast of Mesoproterozoic Century-like ore suspended in the limestone. Through aerial photograph analysis, large-scale convoluted flow structures within the limestone are identified, and these are interpreted to indicate that parts of the Cambrian sequence may have been soft or only semi-consolidated at the time of impact. This highly contorted limestone bedding is suggested to represent slump-filling of an annular trough in response to impact-induced partial liquefaction of a sediment veneer. The age of impact is therefore considered to be concurrent with limestone formation during the Ordian to early Templetonian, at 520 – 510 Ma. Formation of the Century deposit is found to be unrelated to impact-generated hydrothermal activity, although some minor hydrothermal remobilisation of metals occurred. However, there was macro-scale remobilisation of gigantic ore fragments driven by impact-induced lateral and vertical injection of limestone into the Proterozoic sediments. The limestone-filled annular trough surrounds a 7.8 km diameter central uplift, consistent with formation of a complex crater morphology.  相似文献   

12.
Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowl-shaped, Barringer-type craters. Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly foliated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters.  相似文献   

13.
Using orbital imaging radar, we detected a double circular structure, located in the southeastern part of the Libyan Desert, which is partially hidden under sandy sediments. Fieldwork confirmed it to be an unknown double impact crater, each crater having a diameter of about 10 km, younger than 140 Ma. Sampling on the site enabled the observation of quantities of shatter cone structures and impact breccias containing planar fractures. To cite this article: P. Paillou et al., C. R. Geoscience 335 (2003).  相似文献   

14.
西藏阿里札达韧性剪切带特征及其X光岩组分析   总被引:1,自引:0,他引:1  
文中简述了西藏阿里札达盆地的地质背景、区域地层和札达韧性剪切带的基本特征。采用X射线衍射法对札达韧性剪切带中的石英、方解石和白云母等三种矿物,进行了X光岩组分析,确定了韧性变形岩石的组构特征、韧性剪切带的属性和变形岩石的应变类型,以及韧性剪切带形成时的温压条件。研究表明,韧性变形岩石均具不对称组构,反映韧性带属于南盘(下盘)俯冲型韧性剪切带,韧性变形是在高温、高压、低应变速率条件下发生的,处于>10km的地壳深度,岩石应变类型以压扁应变为主。  相似文献   

15.
The Australian continent has one of the best-preserved impact-cratering records on Earth, closely rivalling that of North America and parts of northern Europe, and the rate of new discoveries remains high. In this review 26 impact sites are described, including five small meteorite craters or crater fields associated with actual meteorite fragments (Boxhole, Dalgaranga, Henbury, Veevers, Wolfe Creek) and 21 variably eroded or buried impact structures (Acraman, Amelia Creek, Connolly Basin, Foelsche, Glikson, Goat Paddock, Gosses Bluff, Goyder, Kelly West, Lawn Hill, Liverpool, Matt Wilson, Mt Toondina, Piccaninny, Shoemaker, Spider, Strangways, Tookoonooka, Woodleigh, Yallalie, Yarrabubba). In addition a number of possible impact structures have been proposed and a short list of 22 is detailed herein. The Australian cratering record is anomalously biased towards old structures, and includes the Earth's best record of Proterozoic impact sites. This is likely to be a direct result of aspects of the continent's unique geological evolution. The Australian impact record also includes distal ejecta in the form of two tektite strewn fields (Australasian strewn field, ‘high-soda’ tektites), a single report of 12.1?–?4.6 Ma microtektites, ejecta from the ca 580 Ma Acraman impact structure, and a number of Archaean to Early Palaeoproterozoic impact spherule layers. Possible impact related layers near the Eocene?–?Oligocene and the Permian?–?Triassic boundaries have been described in the literature, but remain unconfirmed. The global K?–?T boundary impact horizon has not been recognised onshore in Australia but is present in nearby deep-sea cores.  相似文献   

16.
The Buck Creek ultramafic body, North Carolina, includes aluminous lenses that have been described as troctolites. These lenses preserve mineral assemblages which record several different stages of metamorphism. The first stage is characterized by anhydrous reactions between olivine and plagioclase to produce coronas of orthopyroxene+ clinopyroxene/spinel symplectite. Thermo barometric results indicate minimum pressures of c. 6 kbar and c. 800 oC. Sapphirine replaces spinel in some clinopyroxene symplectites, and occurs as anhedral grains within amphibole, observations which in combination suggest peak metamorphic conditions of c. 9-10 kbar and c. 850 oC. Sapphirine-bearing hydrous assemblages formed at the expense of the coronas, indicating a second metamorphic episode involving deeper burial, deformation and hydration. Schistose rocks from the margins of the lenses are composed of anorthite+amphibole+margarite+corundum, and probably record a later, lower P-T event. Whole rock analyses for the Buck Creek lenses suggest an accumulate protolith of magnesian olivine and calcic plagioclase. Trace element data for the troctolites are consistent with data for adjacent amphibolites in suggesting that the Buck Creek mafic and ultramafic cumulates crystallized from magmas derived from a mantle source similar to that which produces modern intraplate or rift-related basalts. We propose that the Buck Creek ultramafics represent basal cumulates(± uppermost mantle) from ocean crust formed in a marginal basin in the latest Precambrian. Subduction-induced burial to at least 18 km under dry conditions induced corona formation. Collisional events of the Taconic orogeny thrust the Buck Creek rocks into the orogenic pile to at least 30 km depth and hydrated them along zones of weakness, locally producing P-T -PH2O conditions appropriate for formation of sapphirine and hydrated assemblages, but still preserving some dry symplectites.  相似文献   

17.
New insights into the 3D structure, composition and origin of the Mt Ashmore dome, west Bonaparte Basin, Timor Sea, are enabled by reprocessed seismic-reflection data and by optical microscopic, X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM) analyses of drill cuttings. The structural dome, located below a major pre-Oligocene post-Late Eocene unconformity and above a ~6 km-deep-seated basement high indicated by marked gravity and magnetic anomalies, displays chaotic deformation at its core and a centripetal kinematic deformation pattern. A study of drill cuttings of Lower Oligocene to Lower Jurassic sedimentary rocks intersected by the Mt Ashmore 1B petroleum-exploration well reveals microbrecciation and extreme comminution and flow-textured fluidisation of altered sedimentary material. The microbreccia is dominated by aggregates of poorly diffracting micrometre to tens of micrometres-scale to sub-millimetre particles, including relic subplanar fractured quartz grains, carbonate, barite, apatite and K-feldspar. A similar assemblage occurs in fragments in basal Oligocene sediments, probably derived from the eroded top section of the dome, which protrudes above the unconformity. SEM coupled with EDS show the micrometre to tens of micrometres-scale particles are characterised by very low totals and non-stoichiometric compositions, including particles dominated by Si, Al–Si, Si–Ca–Al, Si–Al–Ca, Si–Mg, Fe–Mg–Ca, Fe–Mg and carbonate. XRD analysis identifies a high proportion of amorphous poorly diffracting material. TEM indicates internally heterogeneous, fragmented and recrystallised structure of the amorphous grains, which accounts for the low totals in terms of the high-volatile and porous nature of the particles. Another factor for the low totals is the uneven thin-section surfaces which affect the totals. No volcanic material or evaporites were encountered in the drillcore, militating against interpretations of the structure in terms of magmatic intrusion or salt diapirism. Such models are also inconsistent with the strong gravity and magnetic anomalies, which signify a basement high below the dome. An interpretation of the dome in terms of a central rebound uplift of an impact structure can not be proven due to the lack of shock metamorphic effects such as planar deformation features, impact melt or coesite. However, an impact model is consistent with the chaotic structure of the domal core, centripetal sense of deformation, microbrecciation, comminution and fluidisation of the Triassic to Eocene rocks. In this respect, an analogy can be drawn between the Mt Ashmore structural dome and likely but unproven impact structures formed in volatile (H2O, CO2)-rich sediments where shock is attenuated by high volatile pressure, such as Upheaval Dome, Utah. In terms of an impact hypothesis the Mt Ashmore dome is contemporaneous with a Late Eocene impact cluster (Popigai: D = 100 km, 35.7 ± 0.2 Ma; Chesapeake Bay: D = 85 km, 35.3 ± 0.1 Ma).  相似文献   

18.
The centre of the 13?×?11 km Spider impact structure, Western Australia, displays an unusual system of eroded folds and imbricated thrusts surrounding a sandstone dome. As inferred from GIS-integrated remote sensing, geological and digital elevation data, the structural setting of the original crater was influenced by, and hence post-dates, the formation of the Mt Barnett Syncline, the east?–?west-oriented axis of which runs through the Spider structure. The syncline formed during the regional Yampi Orogeny (ca 900 Ma), thus constraining the maximum age of the impact event. The sandstone dome in the centre of Spider formed prior to the imbrication, as interpreted from the present setting that indicates a deflection of the southward moving material during the crater collapse. Two modes of formation are discussed in order to explain the south-directed shortening in the Spider impact structure: (i) impact into the bottom of a syncline-controlled palaeovalley leading to uplift of the central crater floor followed by gravity-driven asymmetric sliding preferentially from the northern crater wall and valley slope, respectively; and (ii) moderately oblique (~10?–?30°) impact from the north onto the axis of the syncline, producing a central uplift under the influence of downrange residual momentum and, thus, asymmetric deformation inside the uplift and farther downrange. Neither model alone explains all the observations, and only a combination of both may provide a satisfactory solution.  相似文献   

19.
A new tectonic model for Tasmania incorporates subduction at the boundary between eastern and western Tasmania. This model integrates thin‐ and thick‐skinned tectonics, providing a mechanism for emplacement of allochthonous elements on to both eastern and western Tasmania as well as rapid burial, metamorphism and exhumation of high‐pressure metamorphic rocks. The west Tamar region in northern Tasmania lies at the boundary between eastern and western Tasmania. Here, rocks in the Port Sorell Formation were metamorphosed at high pressures (700–1400 MPa) and temperatures (400–500°C), indicating subduction to depths of up to 30 km. The eastern boundary of the Port Sorell Formation with mafic‐ultramafic rocks of the Andersons Creek Ultramafic Complex is hidden beneath allochthonous ?Mesoproterozoic turbidites of the Badger Head Group. At depth, this boundary coincides with the inferred boundary between eastern and western Tasmania, imaged in seismic data as a series of east‐dipping reflections. The Andersons Creek Ultramafic Complex was previously thought of as allochthonous, based mainly on associations with other mafic‐ultramafic complexes in western Tasmania. However, the base of the Andersons Creek Ultramafic Complex is not exposed and, given its position east of the boundary with western Tasmania, it is equally likely that it represents the exposed western edge of autochthonous eastern Tasmanian basement. A thin sliver of faulted and metamorphosed rock, including amphibolites, partially separates the Badger Head Group from the Andersons Creek Ultramafic Complex. Mafic rocks in this package match geochemically mafic rocks in the Port Sorell Formation. This match is consistent with two structural events in the Badger Head Group showing tectonic transport of the group from the west during Cambrian Delamerian orogenesis. Rather than being subducted, emplacement of the Badger Head Group onto the Andersons Creek Ultramafic Complex indicates accretion of the Badger Head Group onto eastern Tasmania. Subsequent folding and thrusting in the west Tamar region also accompanied Devonian Tabberabberan orogenesis. Reversal from northeast to southwest tectonic vergence saw imbricate thrusting of Proterozoic and Palaeozoic strata, possibly coinciding with reactivation of the suture separating eastern and western Tasmania.  相似文献   

20.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号