首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

2.
The aqueous mobility and potential bioavailability of metals and metalloids in road runoff in a ‘wet–dry’ tropical location were assessed by analysing metal and metalloid concentrations in particulate, total dissolved and labile dissolved phases in runoff waters. Road-derived Al, Cu, Pb, Sb and Zn concentrations were substantially elevated in runoff when compared to receiving creek waters. Median dissolved concentrations in road runoff exceeded those in creek waters by up to an order of magnitude. Leaching experiments of road sediments confirmed that several metals and metalloids were released in high concentrations from road sediments. Labile Zn and Cu concentrations measured by diffusion gradients in thin films (DGT) showed that almost all dissolved Zn and up to half of dissolved Cu in runoff waters and in road sediment leachate were potentially bioavailable. Comparisons of dissolved metal concentrations in receiving waters affected by road runoff with ecosystem guideline levels, indicated a risk of reaching toxic levels of Cu and Zn in the receiving waters in the absence of adequate treatment or dilution. Low dilution rates of road runoff are likely to occur during late ‘dry’ season/early ‘wet’ season storms which have the potential to produce high metal concentrations derived from long periods of accumulation of road sediment at a time when creek flow rates are at their annual minimum.  相似文献   

3.
Geochemical, mineralogical and textural analyses were carried out in core sediments off Adyar estuary, Bay of Bengal, India to record the contamination trend from urban and industrial activities during the historical past. Quartz, feldspar, kaolinite, chlorite and illite were the main lithogenic and clay minerals; carbonate was the predominant biogenic mineral. Trace metals (Fe, Al, Cu, Cr, Ni, Pb and Zn) indicate more enrichment in the surface sediment layers due to recent anthropogenic activities. The mean anthropogenic factor (AF) values for trace metals in core sediments decreased in the following order: Cr > Ni > Zn > Cu > Pb. The pollution load index (PLI) values in Adyar core sediments ranged from 1 to 1.25 with an average of 1.07. Based on AF, PLI, and sediment quality guidelines values for trace metals, significant metal enrichment and ecological risk were obtained in upper-most sediment layer. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were carried out to find the relationships among the texture size, metals and minerals. The pollution of Adyar estuarine sediments was started in the 1960s, responding to the rapid economic development in Chennai coastal and Adyar estuarine region in the last five decades. Despite these high concentrations in the upper layer, development and expansion of industries are still continuing. The stricter regulations for the discharge and remediation of sediments are urgent for the conservation of environments and human health.  相似文献   

4.
湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪   总被引:12,自引:0,他引:12  
湘江是我国重金属污染最严重的河流之一.本次工作利用等离子质谱(ICP-MS)和多接收同位素质谱(MC-ICP-MS)等技术,对湘江入湖河段沉积物进行了系统的重金属微量元素和Pb同位素分析.结果表明,湘江河床沉积物明显富集Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb等多种重金属微量元素,而湖盆沉积物重金...  相似文献   

5.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

6.
Surface sediments collected at the Tirumalairajan river estuary and their surrounding coastal areas were analyzed for the bulk metal concentration. The sediments were collected from post- and premonsoon seasons. Dominances of heavy metals are in the following order: Fe > Mn > Zn > Pb > Cu in both seasons from estuary and coastal area. The results reveal that Fe, Mn, Cu, Pb, and Zn demonstrated an increased pattern from the estuary when compared to the coastal area. The heavy metal pattern of the sediments of the Tirumalairajan river estuary and its surrounding coastal area offered strong evidence that the coastal area was a major source of heavy metals to the estuarine region. For various metals, the contamination factor and geoaccumulation index (I geo) have been calculated to assess the degree of pollution in sediments. The contamination factor and geoaccumulation index show that Zn, Pb, and Cu unpolluted to moderately pollute the sediments in estuarine part. This study shows the major sources of metal contamination in catchment and anthropogenic ones, such as agriculture runoff, discharge of industrial wastewater, and municipal sewage through the estuary and adjoining coastal area.  相似文献   

7.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

8.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   

9.
This research presents a detailed study which was performed to infer the quantity of metal (Cd, Cr, Pb, Zn, Cu and Fe) contents in sediments of Daye Lake, Central China. The geo-accumulation (I geo) and potential ecological risk (PER) of these metals were assessed. The results reveal that: (1) the mean value of I geo ranked an order of Fe (class 6) > Cd (class 5) > Pb (class 3) > Zn (class 2) > Cr (Class 1) > Cu (Class 0); (2) Potential ecological risk (PER) values calculated for all these metals at different sampled points in Daye Lake exceeded the value of very high risk. Multivariate statistical analyses were carried out to determine the relationship between these six metals and to identify the possible pollution sources, with the results suggesting that the metal content in the sediments has three patterns: the first pattern includes Pb, Cd and Cr which were mainly present due to discharged water by smelting industries; second pattern contains Zn and Cu which mainly originated from the waste residue of the copper mining industry; the third pattern is Fe which is mainly related to mine tailing leaches. This study indicates very high metal content levels in the sediments, which may have adverse risks (average PER = 7,771.62) for the lake’s ecosystem and human beings associated with Daye Lake.  相似文献   

10.
Trace metal dynamics in a seasonally anoxic lake   总被引:1,自引:0,他引:1  
Selected results are presented from a detailed 12-month study of trace metals in a seasonally anoxic lake. Dissolved concentrations of Fe, Mn, organic carbon, Cd, Cu, Pb, Zn, and pH were determined in the water column and the interstitial waters on 39 occasions. Trace metal concentrations remained low throughout the year in both water column and pore waters. There was evidence for some remobilization at the sediment-water interface but sediments deeper than 3 cm acted as a sink throughout the year. Variations in the water concentrations were largely associated with increased loading during periods of heavy rainfall. During the summer, concentrations of Cu and Zn in the waters overlying the sediments were enhanced by release from decomposing algal material. Similarly, enhanced concentrations of Cd, Cu, Pb, and Zn were observed during periods of much reduced mixing during ice-cover. Although there were large seasonal variations in the concentrations of dissolved and particulate Fe and Mn, there were no comparable changes in the concentrations of trace metals.  相似文献   

11.
A sequential extraction method was employed to extract the metals Al, Ag, Cd, Co, Cr, Cu, Pb, Fe, Li, Mn, Ni, and Zn from a 10-m sediment core taken from the Tilbury Basin on the Thames Estuary. Characteristics of the observed metal partitioning distributions were attributed primarily to the composition of the estuarine waters at the time of deposition. For some metals, a decrease in the bulk sediment metal concentrations from a depth of ?6.59 m ODN to the surface was also observed in one of the solid phases. This was the case for Cr, Cu, and Pb extracted from the organic phase and for Zn extracted from the carbonate phase. This decrease in sediment concentrations is thought to reflect reported improvements to water quality in this region of the Thames Estuary in the early 1960s, following updating of major sewage treatment works (STW) approximately 20 km upstream. These findings give an indication of the influence of estuarine inputs from STW on metal partitioning distributions. The order of mobility for the metals of environmental concern was Cd>Ag>Cr>Ni, Zn>Co, Cu, Pb. for Cd and Ag there was a tendency to partition towards the exchangeable phase, both at the surface and at depth, which indicates the potential for long-term leaching of these metals from the sediments.  相似文献   

12.
Factors controlling the distribution of mining-derived Cu, Pb and Zn in the waters and bottom sediments of a large Andean lake (Lago Junin, Peru) have been assessed based on sample collections in May/June 1997 (dry season) and February/March 1998 (wet season). Relatively low levels of trace metals detected in surface waters of the lake during the dry season contrasted greatly with the high values observed during the wet period. Dry season concentrations of total Zn, Cu and Pb in the central lake basin averaged 41, 4.4 and 0.24 µg/L, respectively. In contrast, the respective wet season concentrations of total Zn, Cu and Pb in areas of the main basin ranged up to 387, 52 and 40 µg/L. The seasonal variability in metal concentrations largely reflects an increase in the concentration of particulate metal phases during the wet season. Such observations can be attributed to changes in sediment loadings associated with mining-derived river inputs and changes in lake circulation resulting from hydroelectric dam operations. Surface sediments are characterized by lake-wide enrichments of Zn, Cu and Pb, with maximum concentrations reaching as high as 5, 0.25 and 0.7 wt%, respectively. Estimated rates of authigenic metal accumulation are not sufficient to account for the elevated metal concentrations in the main basin of the lake, indicating that metal distributions are governed by the accumulation of metal-rich particulates. Variations in the spatial distributions of Zn, Cu and Pb are suggested to be a function of varying host phases and textural sorting.  相似文献   

13.
Heavy metal concentrations in floodplain surface soils, Lahn River, Germany   总被引:2,自引:0,他引:2  
 Even relatively pristine drainage basins in industrial countries would appear to have received anthropogenic inputs of heavy metals. Investigation of floodplain surface soils in the Lahn River drainage basin, west-central Germany, indicates that the Cu concentration is 1.5 times the pre-industrial level, Pb and Zn contents twice the pre-industrial level; Cd, Co, and Cr concentrations are nearly equal to background metal values. Based on contamination standards developed for the Lahn River, floodplain soils are moderately contaminated with Pb and Zn, slightly contaminated with Cu. Metal contents are uniform across the floodplain, with the exception of a peak immediately adjacent to the Lahn River. Floodplain surface soil metal contents are less in the Lahn River basin than in larger drainage systems of Germany. Although Lahn River metalliferous sediments are presently immobile, they would, if eroded, contribute to downstream heavy metal concentrations. Consequently, metal storage in smaller drainage basins such as the Lahn should be considered in predictions of future metal loads in major river systems, for aggregate small basins could serve as significant metal contributors. Received: 21 August 1995 · Accepted: 23 January 1996  相似文献   

14.
Sediment cores were collected from the Tilbury Tidal Basin in the Thames Estuary to determine the depositional history of metals in the estuary. Profiles of metals in sediments deposited in the lower Thames Estuary show a 30–50% decrease in concentration for Ag, Cd, Cu, Pb, and Zn, and a 70% decrease for Hg in recent decades. Historic depth soundings data showed the decreases in metal concentrations occurred between 1944 and 1966. The decline in sediment metal concentrations has been attributed to reduced inputs to the estuary, following updating of the major sewage treatment works in 1959 and 1963. This is indicated by the through-core distribution of Mn which implies that prior to 1960 the sediments were deposited in anoxic conditions, which subsequently improved. An increase in Mn concentrations observed in one of the cores has been attributed to increases in the dissolved oxygen of the estuarine waters resulting from the increased efficiency of the sewage treatment works.  相似文献   

15.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

16.
《Applied Geochemistry》2000,15(6):807-817
The concentrations of major and trace elements were determined (aqua regia leach and ICP-AES analyses) in stream, lake and dredged sediments downstream of the historical Antskog iron- and copperworks, S.Finland. The levels of Ag, Cd, Cu, Pb and Zn are highly elevated in all studied sediment types: roughly half of the studied lake-sediment samples contain >5 ppm Ag, >15 ppm Cd, >0.1% Cu, >0.1% Pb and >0.3% Zn. In the dredged sediment material located onshore, the concentrations of Ag, Cu and Pb are comparable to those in the polluted lake-sediment samples, while in stream sediments elevated metal concentrations are found especially in samples characterised by high concentrations of organic material. The source of the elevated metal concentrations is the historical metalworks at Antskog, mainly the copperworks of the 19th century. Compared to the limit values for contaminated soils in Finland, the concentrations of Cu, Pb and Zn are on average elevated by factors >10 in the polluted horizons of lake sediments, >5 in the dredged sediment located onshore and >2 at the most heavily contaminated site in the stream. Since the surface waters in the area are used for agricultural purposes and for various leisure activities, it is necessary to make further detailed investigations into the extent of the metal pollution and to determine species, mobility and bioavailability of the metals.  相似文献   

17.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

18.
Concentration and distribution of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments collected from five stations located along the southwest coast of India were investigated seasonally to assess whether there is insidious buildup of heavy metals. Spatial variation was in accordance with textural characteristics and organic matter content. The concentration of the metals in sediments of the study area followed the order: Zn > Cr > Ni > Cu > Pb > Cd > Hg. The use of geochemical tools and sediment quality guidelines to account for the magnitude of heavy metal contamination revealed high contamination in monsoon and impoverishment during post-monsoon. Estimated total metal concentrations in the present investigation were comparable with other studies; however, concentrations of Ni and Zn were higher than that of other coastal regions. Concentrations of metals in sediment largely exceed NOAA effects range:low (e.g., Cu, Cr, Hg) or effects range:median (e.g., Ni) values. This means that adverse effects for benthic organisms are highly probable.  相似文献   

19.
武汉市墨水湖沉积物重金属污染特征与防治对策   总被引:8,自引:2,他引:8  
苏春利  王焰新 《矿物岩石》2006,26(2):111-116
武汉市墨水湖重金属污染严重,其污染特征在我国城市湖泊中具代表性。在对墨水湖不同湖区沉积物中重金属污染物空间分布特征进行分析的基础上,应用地积累指数法探讨不同重金属元素含量随深度变化的规律和原因,并对墨水湖沉积物中重金属的污染程度进行评价表明:墨水湖沉积物中重金属元素锌和汞污染最为严重,污染程度由高到低依次为:Zn>Hg>Cu>C r>Pb>A s;从整个湖区来看,分布有排污口的周边湖区污染严重,湖心污染程度较低;沉积物中主要重金属元素含量随深度增加而降低,其变化规律主要受污染状况的影响,沉积物颗粒粒径的变化和早期成岩作用的影响不大。为了改善墨水湖水质条件和重金属污染严重的现状,必须在截污、疏浚和引水工程等基本治理措施保护下,重建和恢复沉水植物系统,才能从根本上改善湖泊水质。  相似文献   

20.
《Applied Geochemistry》1998,13(3):359-368
Studies on the speciation (particulate, colloidal, anionic and cationic forms) of trace metals (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn) in the water column and in pore waters of the Gotland Deep following the 1993/94 salt-water inflows showed dramatic changes in the total “dissolved” metal concentrations and in the ratios between different metal species in the freshly re-oxygenated waters below 125 m. Changes in concentrations were greatest for those metals for which the solubility differs with the redox state (Fe, Mn, Co) but were also noted for those metals which form insoluble sulphides (Cd, Pb, Cu, Zn) and/or stable complexes with natural ligands (Cu). Pore water data from segmented surface muds (0–200 mm) indicated that significant redox and related metal speciation changes took place in the surface sediments only a few weeks after the inflow of the oxygenated sea water into the Gotland Deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号