首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Re-evaluation of geochemical and geophysical datasets, and analysis of magmatic and detrital zircons from drill-core samples extracted from the Louth region of the southern Thomson Orogen (STO), augmented by limited field samples, has shown that two temporally and compositionally distinct igneous groups exist. The older Lower Devonian, calc-alkaline group corresponds to complexly folded, high-intensity curvilinear magnetic anomalies in the Louth region (Louth Volcanics) and are probable equivalents to Lower Devonian volcanics in the northern Lachlan Orogen. A younger Permo-Triassic alkaline assemblage forms part of an E–W corridor of diatremes that appears to relate to focussed lithospheric extension associated with the later stages of the Hunter–Bowen Orogeny in the New England Orogen. The alkaline group includes gabbros previously considered as Neoproterozoic, but all magmatic rocks, including alkaline basalts, contain an unusual number of xenocrystic zircons. The age spectra of the xenocrystic zircons mimic detrital zircons from Cobar Basin sedimentary rocks and/or underlying Ordovician turbidites, suggesting incorporation of upper crustal zircons into the alkaline basaltic magmas. A distinct difference of detrital zircon age spectra from central Thomson Orogen metasediments indicates the STO metasediments have greater affinities to the Lachlan Orogen, but both orogens probably began in the Early Ordovician during widespread backarc extension and deposition of turbidites in the Tasmanides. A surprising result is that Ordovician, Devonian and Permo-Triassic basaltic rocks from the STO and elsewhere in the Tasmanides, all yield the same Nd-model ages of ca 960–830 Ma, suggesting that Neoproterozoic subcontinental lithospheric mantle persisted throughout the evolution of the Tasmanide orogenic system.  相似文献   

2.
Abstract

Magmatic-textured zircon from medium- to high-K calc-alkaline Warraweena Volcanics (WV) in two drill holes have yielded concordant U–Pb dates of 417?±?3.5 and 414?±?4.0?Ma and are interpreted as maximum emplacement ages. The Warraweena volcanics were previously considered to be either Neoproterozoic or Macquarie arc equivalents. Whole-rock εNdt values of these volcanics are +4.5 and +4.8. Along strike of the drill holes, Devonian zircon U–Pb ages (411?±?5.5?Ma) were obtained from coherent S-type rhyolite flows that have highly negative εNdt values (–7.9 and –7.8). These are a component of the Oxley volcanics. The ages of the Warraweena and Oxley volcanics are identical within uncertainty.

The Oxley volcanics (OV) are interbedded with predominantly fine- to medium-grained metasedimentary and so imply a Lower Devonian deposition age for these host rocks. Based on their geophysical characteristics, the metasediments are widely distributed. These metasedimentary rocks yield a wide range of maximum depositional ages, from Early Devonian to earliest Ordovician–latest Cambrian, similar to the Cobar Basin. The absence of complex fabric development typical of Ordovician supracrustal rocks in the region, and conformity with the OV where observable suggest the widespread sedimentation was synchronous with rift-related volcanism in the Early Devonian.

Regionally, the WV is temporally, geochemically and isotopically (εNd values) similar to the calc-alkaline Louth Volcanics located over 100?km to the southwest of the WV. Louth Volcanics define a complexly folded belt in geophysical data. Other potentially correlative Early Devonian igneous rocks occur in the nearby Cobar Superbasin and elsewhere in the eastern Lachlan Orogen and are considered to represent the products of a post-orogenic, nascent continental back-arc rift system.  相似文献   

3.
Abstract

The Devonian subsurface Adavale Basin occupies a central position in the Paleozoic central Thomson Orogen of eastern Australia and records its tectonic setting during this time interval. Here, we have focussed on the basal volcanics of the Gumbardo Formation to clarify the tectonic setting of the basin. The approach has been to undertake stratigraphic logging, LA-ICP-MS U–Pb zircon geochronology and whole-rock geochemical analysis. The data indicate that basin initiation was rapid occurring at ca 401?Ma. The volcanic rocks are dominated by K-feldspar phyric rhyodacitic ignimbrites. The whole-rock geochemical data indicate little evidence for extensive fractional crystallisation, with the volcanic suite resembling the composition of the upper continental crust and exhibiting transitional I- to A-type tectonomagmatic affinities. One new U–Pb zircon age revealed an Early Ordovician emplacement age for a volcanic rock previously interpreted to be part of the Early Devonian Gumbardo Formation, and older basement age is consistent with seismic interpretations of uplifted basement in this region of the western Adavale Basin. Five ignimbrites dated from different stratigraphic levels within the formation yield similar emplacement ages with a pooled weighted age of 398.2?±?1.9?Ma (mean square weighted deviation?=?0.94, n?=?93). Significant zircon inheritance in the volcanic rocks records reworking of Ordovician and Silurian silicic igneous basement from the Thomson Orogen and provides insight into the crustal make-up of the Thomson Orogen. Collectively, the new data presented here suggest the Adavale Basin is a cover-type basin that developed on a stabilised Thomson Orogen after the major Bindian deformation event in the late Silurian.  相似文献   

4.
Abstract

The diverse geological and geophysical data sets compiled, interrogated and interpreted for the largely undercover southern Thomson Orogen region reveal a Paleozoic terrane dominated by deformed metasedimentary rocks intruded by S- and I-type granites. An interpretive basement geology map and synthesis of geochronological constraints allow definition of several stratigraphic packages. The oldest and most widespread comprises upper Cambrian to Lower Ordovician metasedimentary rocks deposited during the vast extensional Larapinta Event with maximum depositional ages of ca 520 to ca 496 Ma. These units correlate with elements of the northern Thomson Orogen, Warburton Basin and Amadeus Basin. The degree of deformation and metamorphism of these rocks varies across the region. A second major package includes Lower to Middle Devonian volcanic and sedimentary units, some of which correlate with components of the Lachlan Orogen. The region also includes a Middle to Upper Ordovician package of metasedimentary rocks and a Devonian or younger package of intermediate volcaniclastic rocks of restricted extent. Intrusive units range from diatremes and relatively small layered mafic bodies to batholithic-scale suites of granite and granodiorite. S-type and I-type intrusions are both present, and ages range from Ordovician to Triassic, but late Silurian intrusions are the most abundant. Two broad belts of intrusions are recognised. In the east, the Scalby Belt comprises relatively young (Upper Devonian) intrusions, while in the west, the Ella Belt is dominated by intrusions of late Silurian age within a curvilinear, broadly east–west trend. The stratigraphic distributions, characteristics and constraints defined by this interpretive basement mapping provide a basic framework for ongoing research and mineral exploration.  相似文献   

5.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   

6.
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9–1.0 Ga and ca. 420–440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484–383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310–254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298–269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298–246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.  相似文献   

7.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

8.
Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ~2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ~2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.  相似文献   

9.
阿拉善东缘奥陶纪地层位于鄂尔多斯(华北地块)与北祁连早古生代造山带之间的过渡地区,该区的构造背景一直是长期争论的问题,它涉及到阿拉善地块是否与华北地块相连、奥陶系的物源以及"贺兰拗拉槽"是否存在等问题。分布于阿拉善地块东缘的中奥陶统米钵山组的碎屑锆石LA-ICP-MSU-Pb年龄测试表明,样品中数量最多的锆石年龄为900~950Ma,Alxa-1的峰值年龄为916Ma,Alxa-2的峰值年龄为953Ma,次者在494~623Ma之间,这个区间内存在多个峰值,如Alxa-1存在505Ma和588Ma两个主要峰值,Alxa-2则存在494Ma、517Ma、623Ma等几个峰值。在2.5Ga左右两个样品都存在一个弱的峰值,Alxa-1峰值为2517Ma,而Alxa-2峰值为2552Ma和2670Ma。除此之外,两个样品都有个别大于3.0Ga的成分,Alxa-1样品中最年轻的锆石为451±8Ma,Alxa-2样品则为483±4Ma。这些年龄以及沉积特征表明:(1)传统认为的奥陶纪"贺兰拗拉槽"并不存在,鄂尔多斯西南缘地区以及阿拉善东部地区当时属于北祁连早古生代周缘前陆盆地系统;(2)早古生代主要物源来自北祁连造山带,新元古代物源来自阿拉善地块;(3)鄂尔多斯西缘整个米钵山组的锆石年龄分布及其变化,指示出北祁连造山带(岛弧)逐渐靠近阿拉善地块,其间洋盆逐渐消失的过程;(4)阿拉善地块基底与华北有明显差别,阿拉善地块明显受到新元古代和古生代构造热事件的影响,两者可能是在中奥陶世或之后才拼贴在一起。  相似文献   

10.
Vein-type, structurally controlled Cu–Au mineralisation hosted by turbidites of late Silurian to earliest Devonian age, forms an important resource close to the eastern margin of the Cobar Basin. Here we report 103 new sulfur isotope analyses, together with homogenisation temperatures and salinity data for 545 primary two-phase fluid inclusions for the mineralised zones from the central area of the Cobar mining district. A range in δ34S values from 3.8 to 11.2‰ (average 7.9‰) is present. Sulfur is likely to have been derived from rock sulfur/sulfide in basin and basement rocks, but there may be an additional connate-derived component. Homogenisation temperatures (Th) for inclusion fluids trapped in quartz and minor calcite veins range from near 150°C to 397°C. Fluid inclusions are characterised by a low CO2 content and low, but variable salinities (2.1–9.1 wt% NaCl equivalent). Generations of inclusion fluids correspond to six paragenetic stages of vein quartz deposition and recrystallisation at the Chesney mine. Primary fluid inclusions in the first two stages were subjected to re-equilibration resulting from increased confining pressure. Their Th range (151–317°C) is considered a minimum for the temperature of these fluids. Sulfide and gold deposition at Chesney appears to be related to fluids of moderately high Th (range 270–397°C) associated with the final paragenetic stage. Th for the ore-related fluids may be close to the solvus of the H2O–NaCl–CO2 system and hence near trapping temperatures. Late-stage entry of a hot, moderately saline ore-forming fluid is implicated as the origin of the Cu–Au mineralisation. However, comparison with geochemical data for the vein-style Zn–Pb–Ag deposits at Cobar demonstrates that differences in metal content for individual zones cannot be attributed to major differences in fluid temperature or salinity. Rather, these differences are probably due to variations in source-rock reservoirs and structural pathways along which the ore-forming fluids moved.  相似文献   

11.
New SIMS U-Pb (zircon) data for intrusive rocks of the Macquarie Arc and adjacent granitic batholiths of the Lachlan Orogen (southeastern Australia) provide insight into the magmatic and tectonic evolution of the paleo-Pacific Gondwana margin in the early Paleozoic. These data are augmented by Re-Os dates on molybdenite from four Cu-Au mineralised porphyry systems to place minimum age constraints on igneous crystallization. The simplicity of the zircon age distributions, and absence of older inheritance, stands in contrast to previous geochronological studies. The earliest magmatism within the Macquarie Arc is registered by a ca. 503 Ma gabbro from the Monza igneous complex, whereas a monzodiorite from the same drillhole records the youngest (ca. 432 Ma). Igneous activity in the Macquarie Arc thus overlapped deformation and magmatism in the craton-proximal Delamerian Orogen to the west, and the emplacement of the Lachlan granitic batholiths at 435–430 Ma; the thermal pulse associated with the latter may have triggered the formation of richly mineralised Silurian porphyries in the Macquarie Arc. The juvenile Hf isotope signature of the Monza Gabbro, together with the lack of zircon inheritance and the radiogenic Hf-Nd isotope systematics of Ordovician Macquarie Arc rocks, is consistent with early development of the arc, or a precursor magmatic belt, in an oceanic setting remote from continental influences, and with the arc being built on primitive Cambrian mafic crust. Outboard arc magmatism in the Cambrian may have initiated in response to convergent Delamerian orogenesis adjacent the Gondwana margin. Overlapping radiogenic isotope-time trends are consistent with the evolution of the Macquarie Arc and the Gondwana continental margin being linked from the Cambrian to the Silurian. These data provide further evidence for the growth of continental crust along the southeastern Australian segment of this margin being related to the dynamics of an extensional accretionary orogenic system.  相似文献   

12.
The Ordovician Macquarie Arc in the eastern subprovince of the Lachlan Orogen, southeastern Australia, is an unusual arc that evolved in four vertically stacked volcanic phases over ~ 37 million years, and which is flanked by coeval, craton-derived, passive margin sedimentary terranes dominated by detrital quartz grains. Although these two terranes are marked by a general absence of provenance mixing, LA-ICPMS analysis of U–Pb and Lu–Hf contents in zircon grains in volcaniclastic rocks from 3 phases of the arc demonstrates the same age populations of detrital grains inherited from the Gondwana margin as those that characterise the flanking quartz-rich Ordovician turbidites. Magmatic Phase 1 is older, ~ 480 Ma, and is characterised by detrital zircons grains with ages of ~ 490–540 with negative εHf from 0 to mainly –7.78, 550–625 Ma ages with negative εHf from 0 to ?26.6 and 970–1250 Ma (Grenvillian) with εHf from + 6.47 to ?6.44. We have not as yet identified any magmatic zircons related to Phase 1 volcanism. Small amounts of detrital zircons also occur in Phase 2 (~ 468–455 Ma), hiatus 1 and Phase 4 (~ 449–443 Ma), all of which are dominated by Ordovician magmatic zircons with positive εHf values, indicating derivation from unevolved mantle-derived magmas, consistent with formation in an intraoceanic island arc. Because of the previously obtained positive whole rock εNd values from Phase 1 lavas, we rule out contamination from substrate or subducted sediments. Instead, we suggest that during Phase 1, the Macquarie Arc lay close enough to the Gondwana margin so that volcaniclastic rocks were heavily contaminated by detrital zircon grains shed from granites and Grenvillian mafic rocks mainly from Antarctica (Ross Orogen and East Antarctica) and/or the Delamerian margin of Australia. The reduced nature of a Gondwana population in Phase 2, hiatus 1 and Phase 4 is attributed to opening of a marginal basin between the Gondwana margin and the Macquarie Arc that put it out of reach of all but rare turbiditic currents.  相似文献   

13.
The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U–Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374?Ma (Upper Devonian) for the Guaraco Norte Formation and 389?Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406?±?4?Ma to 369?±?5?Ma), indicative of active magmatism at that time range. The εHf values of this population range between ?2.84 and ?0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks. The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted to represent passive margin deposits of mostly Lower Carboniferous age (younger than 374?Ma and older than 326?Ma) that precede the onset of the accretionary prism in Chile and extend into the earliest stage of the accretion, in a retrowedge position. The Arroyo del Torreón and Huaraco formations are considered to be retrowedge basin deposits to the early frontal accretionary prism (Eastern Series) of Chile. The presence of volcanism with arc signature in the units provides evidence of a Mississippian magmatic arc that can be correlated with limited exposures of the same age in the Frontal Cordillera (Argentina). The arc would have migrated to the West (Coastal Batholith) during Pennsylvanian–Permian times (coevally with the later basal accretionary prism/Western Series). The source of a conspicuous population of Devonian detrital zircon interpreted to be of magmatic origin in the studied units is discussed in various possible geotectonic scenarios, the preferred model being a magmatic arc developed in the Chilenia block, related to a west-dipping subduction beneath Chilenia before and shortly after its collision against Cuyania/Gondwana, at around 390?Ma and not linked to the independent, Devonian–Mississippian arc, developed to the south, in Patagonia.  相似文献   

14.
Graptolite‐bearing Middle and Upper Ordovician siliciclastic facies of the Argentine Precordillera fold‐thrust belt record the disintegration of a long‐lived Cambro‐Mid Ordovician carbonate platform into a series of tectonically partitioned basins. A combination of stratigraphic, petrographic, U‐Pb detrital zircon, and Nd‐Pb whole‐rock isotopic data provide evidence for a variety of clastic sediment sources. Four Upper Ordovician quartzo‐lithic sandstones collected in the eastern and central Precordillera yield complex U‐Pb zircon age spectra dominated by 1·05–1·10 Ga zircons, secondary populations of 1·22, 1·30, and 1·46 Ga, rare 2·2 and 1·8 Ga zircons, and a minor population (<2%) of concordant zircons in the 600–700 Ma range. Archaean‐age grains comprise <1% of all zircons analysed from these rocks. In contrast, a feldspathic arenite from the Middle Ordovician Estancia San Isidro Formation of the central Precordillera has two well‐defined peaks at 1·41 and 1·43 Ga, with no grains in the 600–1200 Ma range and none older than 1·70 Ga. The zircon age spectrum in this unit is similar to that of a Middle Cambrian quartz arenite from the La Laja Formation, suggesting that local basement rocks were a regional source of ca 1·4 Ga detrital zircons in the Precordillera Terrane from the Cambrian onwards. The lack of grains younger than 600 Ma in Upper Ordovician units reinforces petrographic data indicating that Ordovician volcanic arc sources did not supply significant material directly to these sedimentary basins. Nd isotopic data (n = 32) for Middle and Upper Ordovician graptolitic shales from six localities define a poorly mixed signal [ɛNd(450 Ma) = −9·6 to −4·5] that becomes more regionally homogenized in Upper Ordovician rocks (−6·2 ± 1·0; TDM = 1·51 ± 0·15 Ga; n = 17), a trend reinforced by the U‐Pb detrital zircon data. It is concluded that proximal, recycled orogenic sources dominated the siliciclastic sediment supply for these basins, consistent with rapid unroofing of the Precordillera Terrane platform succession and basement starting in Mid Ordovician time. Common Pb data for Middle and Upper Ordovician shales from the western and eastern Precordillera (n = 15) provide evidence for a minor (<30%) component that was likely derived from a high‐μ (U/Pb) terrane.  相似文献   

15.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

16.
哀牢山古特提斯洋的打开时限及其缝合带的具体位置对理解哀牢山古特提斯洋构造演化具有非常重要的意义。本文采用碎屑锆石年代学方法,分析了哀牢山构造带及其两侧不同时期沉积物源的特征及其变化,解译了其物源差别所指示的哀牢山古特提斯洋盆打开时限以及缝合带的构造位置。碎屑锆石年代学显示,哀牢山构造带两侧上志留统碎屑锆石都记录一个~450 Ma的最年轻的峰值和一个格林威尔期造山事件的年龄群(1100~800 Ma),以及一个2600~2400 Ma的次峰;不同于上志留统,构造带东侧下泥盆统碎屑锆石并未出现年轻的~450 Ma峰值年龄信息,西侧U-Pb年龄分布模式与上志留统一致,记录~450 Ma峰值年龄信息,而且构造带两侧下泥盆统碎屑锆石的2600~2400 Ma的峰值明显要强于上志留统。区域上发表的碎屑锆石年代学资料,也揭示相同的年龄峰值。因此,综合区域上的其他地质资料,我们认为哀牢山古特提斯洋盆的打开时限应该在晚志留世-早泥盆世,哀牢山断裂带代表了哀牢山洋盆闭合的位置。  相似文献   

17.
对大兴安岭北部漠河盆地中侏罗统漠河组砂岩进行了碎屑锆石LA-ICP-MS U-Pb年龄测试,获得的碎屑锆石U-Pb年龄为1425~170 Ma,反映了中侏罗时期漠河盆地源区的复杂性。该时期漠河盆地物源主要有:中元古代变质火山岩,碎屑锆石年龄1425~1064 Ma;新元古代变质侵入岩,碎屑锆石年龄888~550 Ma;寒武—奥陶纪变质表壳岩与深成侵入岩,碎屑锆石年龄517~441 Ma;石炭—二叠纪侵入岩,碎屑锆石年龄327~252 Ma;三叠纪—中侏罗世侵入岩,碎屑锆石年龄250~170 Ma。这一测试数据与盆地现在南缘分布的地质体的时代基本对应,说明盆地的物源主要来自南部的中元古代—中侏罗世地质体,碎屑锆石中最小年龄为170 Ma,反映漠河组沉积下限不早于中侏罗世早期。这一成果对研究漠河盆地源区的物质组成、盆地沉积年代和油气成藏条件提供了新的素材。  相似文献   

18.
We report a Middle Ordovician metagranitoid from the northern margin of the Anatolide‐Tauride Block, the basement of which is generally characterized by voluminous Latest Proterozoic to Early Cambrian granitoids. The Ordovician metagranitoid forms an ~400‐m‐thick body in the marbles and micaschists of the Tav?anl? Zone. The whole sequence was metamorphosed in the blueschist facies during the Late Cretaceous (c. 80 Ma). Zircons from the metagranitoid give a Middle Ordovician Pb‐Pb evaporation age of 467.0 ± 4.5 Ma interpreted as the age of crystallization of the parent granitic magma. The micaschists underlying the metagranitoid yield Cambro‐Ordovician (530–450 Ma) and Carboniferous (c. 310 Ma) detrital zircon ages indicating that the granitoid is a pre‐ or syn‐metamorphic tectonic slice. The Ordovician metagranitoid represents a remnant of the crystalline basement of the Anatolide‐Tauride Block and provides evidence for Ordovician magmatism at the northern margin of Gondwana. Prismatic Carboniferous detrital zircons in the micaschists indicate that during the Triassic, the northern margin of the Anatolide‐Tauride Block was close to Variscan terranes.  相似文献   

19.

The Cobar Basin in central western New South Wales is a mineral‐rich Early Devonian basin typical of those that characterize the Siluro‐Devonian history of the Lachlan Orogen of southeastern Australia. One hundred and seventy kilometres of seismic profiling in three lines across the basin have shown it to be asymmetrical in shape with an east‐dipping western margin that is steeper than the moderately west‐dipping eastern margin. Maximum basin thickness is around 6 km, but there are significant thickness changes, especially from south to north, which reflect the effect of synsedimentary faulting. Seismic profiling suggests that the basin deformed by thin‐skinned tectonics; postulated strike‐slip effects were not visible on the sections. The seismic profiling has, for the first time, imaged the western synrift basin margin which is generally not exposed. Strain variations during deformation along this edge were taken up by the formation of a major jog ('dog‐leg') which has propagated into the basin as a tear fault. Intrabasinal tears, as well as thrusts, which link into one or more detachments, provide potential pathways for mineralizing fluids during basin inversion.  相似文献   

20.
甘蒙北山地区下石炭统绿条山组 时代修正及其构造意义   总被引:9,自引:1,他引:8  
甘肃—内蒙古北山地区位于中亚造山带中段,其晚古生代洋盆最终闭合时间倍受关注且久有争议。早石炭世是该区洋陆转换的关键时期之一,下石炭统下部绿条山组与下伏的下、中泥盆统之间的角度不整合被认为是该区构造隆升的主要证据之一。但由于研究程度限制,绿条山组的时代尚有争议,一定程度上制约了该区构造演化的深入分析。北山北部甜水井北与碎石山剖面绿条山组火山岩的LA-ICP-MS锆石U-Pb年龄分别为296.8±3.5Ma与311.1±3.2Ma,产出晚石炭世巴什基尔期(Bashkirian)菊石Gastrioceras和Branneroceras,时代应修订为晚石炭世—早二叠世早期。研究区下泥盆统—上石炭统沉积充填及生物群落特征表明该区可能在晚石炭世由大陆边缘浅海演化至裂谷盆地,上石炭统与下、中泥盆统之间的角度不整合代表洋陆转化造成的长时间隆升剥蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号