首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Aeromagnetic and field data suggest that meta‐igneous rocks exposed on the south coast of central Victoria at Waratah Bay, Phillip Island, Barrabool Hills and inland near Licola, are continuous—beneath Bass Strait—with Proterozoic/Cambrian igneous rocks in King Island and Tasmania. This correlation is supported by a pre‐Early Ordovician unconformity above gabbro protomylonite at Waratah Bay, age equivalent to the Tasmanian Tyennan unconformity. Cambrian volcanics at Licola and unusual features of the Melbourne Zone sequence indicate that Tyennan continental crust extends north as basement to the central Victorian portion of the Lachlan Fold Belt. In contrast, adjacent parts of the Lachlan Fold Belt in Victoria contain conformable sea‐floor sequences that span the Early Cambrian to Late Ordovician, with no evidence of either Cambrian deformation or underlying continental basement. The block of Tyennan continental crust beneath central Victoria—the Selwyn Block—is fundamentally different, and has influenced temporal and spatial patterns of sedimentation, deformation, metamorphism and plutonism. Palaeogeographical reconstructions suggest that the block was a submarine plateau that lay outboard of the Australian craton, upon which a condensed Ordovician sequence was deposited. The sequence above the Selwyn Block unconformity at Waratah Bay is similar to widespread post‐Tyennan sediments in western Tasmania. During Late Ordovician and Early Silurian deformation, the Selwyn Block protected much of the overlying sedimentary sequence. Instead, shortening was focused into the Stawell and Bendigo Zones to the west. These zones were sandwiched between the Selwyn Block and the Australian craton in a ‘vice’ scenario reminiscent of some Appalachian orogenic events. The region above the Selwyn Block was downwarped adjacent to the overthrust Bendigo Zone as a foreland deep, into which a conformable clastic wedge of sediment was deposited in Late Ordovician to Devonian time, prior to final Middle Devonian deformation. The Selwyn Block includes the Cambrian calc‐alkaline Licola and Jamieson Volcanics that are correlated with the Tasmanian Mt Read Volcanics. In Victoria, these form a basement high controlling the unusual down‐cutting thrusts in the overlying Melbourne Zone and explaining the major structural vergence reversal between the Melbourne and Tabberabbera Zones. The Selwyn Block has exerted some control on the timing, chemistry and distribution of post‐orogenic granites, and on central Victorian gold mineralisation. Reactivated faults in the block influenced deposition, and continue to control the deformation of the portions of the Otway and Gippsland Basins that lie above it.  相似文献   

2.
The Proterozoic to Cambrian VanDieland microcontinent was accreted to mainland Australia at ca 400?Ma, and its northern tip, the Selwyn Block, forms the basement in central Victoria. Here, mainly Late Devonian, silicic magmas were derived from the Selwyn Block and intruded into the shallow crust. We use the phase petrology of Late Devonian, S-type rhyolitic ignimbrites and a xenolith of pelitic migmatite, together with Nd-model ages for the silicic magmatic rocks to constrain the lithological characteristics of the metasedimentary component of the Selwyn Block, to infer minimum depths and temperature conditions here in the Late Devonian, and the likely ages of the source rocks for the S-type magmas. The most abundant source rocks are inferred to be volcaniclastic metagreywackes, with minor metadacites, meta-andesites and metapelites. The metapelitic xenolith cannot have been the source for any of the silicic magmas but constrains the upper amphibolite-facies part of the Selwyn Block to depths around 17?km, where temperatures reached ~775?°C. The older ignimbrite magma was formed by partial melting at perhaps 770?°C and a depth of at least 33?km, while the younger ignimbrite magma formed at ~23?km and 900?°C. These depths suggest source rocks in the Paleoproterozoic to Mesoproterozoic lower parts of the Selwyn Block. Nd-model ages of the silicic magmatic rocks confirm a dominance of Mesoproterozoic to Paleoproterozoic sources. If the inferred rock types in the Mesoproterozoic formations were as current correlations suggest, the sources for the Late Devonian silicic magmas would have to lie in the undocumented Paleoproterozoic basement of the Selwyn Block. Rock types here must include andesitic to dacitic volcanic components as well as volcaniclastic greywackes and minor pelites, which suggests a continental arc setting. The Late Devonian magmatism in the region may record the progression from amphibolite- to granulite-facies conditions during post-orogenic extension, with heat advected to the crust by mantle-derived mafic magmas. These processes would have resulted in mafitisation of the deep Selwyn Block.  相似文献   

3.
Reconstructions of the Cambrian–Silurian tectonic evolution of eastern Gondwanaland, when the Australian Tasmanides and Antarctic Ross Orogen developed, rely on correlation between structural elements in SE Australia and Northern Victoria Land (NVL), Antarctica. A variety of published models exist but none completely solve the tectonic puzzle that is the Delamerian–Lachlan transition in the Tasmanides. This paper summarizes the understanding of Cambrian (Delamerian) to Silurian (Lachlan) geological evolution of the eastern Tasmanides, taking into account new deep seismic data that clarifies the geological connection between Victoria and Tasmania — the ‘Selwyn Block’ model. It evaluates previous attempts at correlation between NVL, Tasmania and Victoria, and presents a new scenario that encompasses the most robust correlations. Tasmania together with the Selwyn Block is reinterpreted as an exotic Proterozoic microcontinental block – ‘VanDieland’ – that collided into the east Gondwanaland margin south of western Victoria, and north of NVL in the Late Cambrian, perhaps terminating the Delamerian Orogeny in SE Australia. Subsequent north-east ‘tectonic escape’ of VanDieland in the Early Ordovician explains the present-day outboard position of Tasmania with respect to the rest of the Delamerian orogen, the origin of the hiatus that separates the Delamerian and Lachlan orogenic cycles in Australia, and how western Lachlan oceanic crust developed as a ‘trapped plate-segment’. The model establishes a new structural template for subsequent Lachlan Orogen development and Mesozoic Australia–Antarctica separation.  相似文献   

4.
The Jalisco Block is thought to be part of the Guerrero terrane, but the nature and age of the underlying crystalline basement are largely unknown. We have collected a suite of schists, granitoids, and weakly metamorphosed marine sediments from various parts of the Jalisco Block including Atenguillo and Ameca, Mascota and San Sebastián, Cuale, Puerto Vallarta, Punta Mita, Yelapa, and Tomatlán. The schists range in age from 135 to 161 Ma, with many exhibiting Proterozoic and Phanerozoic zircon ages. The granitoids range in age from 65 to 90 Ma, and are calc-alkaline compositionally—similar to granitoids from the Puerto Vallarta and Los Cabos batholiths. The Jalisco granitoids also experienced similar uplift rates to granitoids from the regions to the north and south of the Jalisco Block. The marine sediments yield a maximum depositional age of 131 Ma, and also contain a significant zircon population with ages extending back to the Archean. Granitoids from this study define two age groups, even after the effects of thermal resetting and different closure temperatures are considered. The 66.8-Ma silicic ash flow tuff near Union de Tula significantly expands the extent of this Cretaceous–Paleocene age ash flow tuff unit within the Jalisco Block, and we propose calling the unit “Carmichael silicic ash flow tuff volcanic succession” in honor of Ian Carmichael. The ages of the basement schists in the Jalisco Block fully overlap with the ages of terranes of continental Mexico, and other parts of the Guerrero terrane in the south, confirming the autochthonous origin of the Jalisco Block rather than exotic arc or allochthonous origin. Geologic data, in combination with geochronologic and oxygen isotopic data, suggest the evolution of SW Mexico with an early 200–1,200-Ma passive margin, followed by steep subduction in a continental arc setting at 160–165 Ma, then shallower subduction by 135 Ma, and finally, emplacement of granitoids at 65–90 Ma.  相似文献   

5.
The Strathbogie Igneous Complex is comprised of the ignimbritic rocks of the Violet Town Volcanics and the granitic rocks of the Strathbogie batholith. It is Late Devonian in age and postorogenic-extensional in tectonic setting. The batholith was constructed from peraluminous, metasediment-derived magmas emplaced as several internally heterogeneous plutons. Chemical variation in the magmas was largely inherited from the protolith rather than having been produced by differentiation (crystal–liquid separation) or magma mixing. The Strathbogie magmas formed during a granulite-facies metamorphic event that caused partial melting of the rocks of the Proterozoic Selwyn Block, which forms the basement in this region. The chemistry of the Strathbogie batholith, the Violet Town Volcanics and various other felsic complexes of similar age, implies that the Selwyn Block here originally consisted of andesite, dacite, greywacke and pelite, probably deposited in a back-arc extensional setting. The sedimentary components of this protolith may have been deposited in a basin that was extending and deepening with time, so that the sediments contained progressively higher ratios of clay to volcanic materials. Much later, in the Late Devonian, extensional tectonics allowed the emplacement of mantle magmas into the deep and middle crust, causing the low-pressure granulite-facies metamorphic event that was responsible for the production of the crustal components in the granitic magmas of Central Victoria.  相似文献   

6.
The Neoproterozoic to Cambrian Selwyn Block in Central Victoria forms the mainly unexposed basement to the Paleozoic metasediments, granitic rocks and felsic volcanic complexes of the Melbourne Zone of the Lachlan Orogen. The Late Devonian felsic rocks are largely products of partial melting of the Selwyn Block, and their chemistry implies that their sources were most probably arc-related andesite, dacite, volcaniclastic greywackes and some pelites. When plotted against the median longitudes of the plutons and volcanic complexes, the average values for 87Sr/86Srt and ?Ndt (at 370 Ma) reveal broad trends interpreted to reflect possible compositional and/or age structure in the Selwyn Block. Assuming that the trends are real, from W to E, I-type sources are progressively less crustally evolved, probably younging eastward. The S-type sources show no trend in ?Ndt, suggesting that there was efficient sediment mixing. The 87Sr/86Srt values, however, become more evolved eastward (opposite in sense to the apparent variation in the I-type sources). This is interpreted as the original Selwyn Block sediments having been more pelitic eastward, perhaps suggesting a deepening of the basin in this direction, as well as structurally upward in the succession. The opposite senses of variation highlights the spatial separation of the S- and I-type sources and suggest that the granitic magmas here are unlikely to represent any sort of mixing continuum.  相似文献   

7.
Situated in the southwest of the Central Asian Orogenic Belt (CAOB), the South Tian Shan (STS) Block is a key area for understanding the final accretion of the CAOB. A suite of volcanic rocks interbedded with continental sediments from the Xiaotikanlike Formation lies along the southwestern edge of the Tian Shan orogen. Laser-ablation-inductively coupled plasma-mass spectrometer U–Pb dating provided a crystallization age of 295.0 ± 2.8 Ma (MSWD = 1.3), suggesting an Early Permian magmatic event. The volcanic rocks show a variable composition, with dominant rhyolites and dacites, subordinate basaltic andesites and few basalts. The felsic rocks are enriched in K and exhibit remarkably negative anomalies in Ba, Sr, Eu, P and Ti. These anomalies associated with their high negative ε Nd(t) values and old Nd model ages suggest that they are most likely sourced from ancient lower crustal rocks. The mafic rocks are characterized by high Mg#, Cr, Ni contents, negative Nb, Ta anomalies and pronounced enrichment in light rare earth elements as well as mild enrichment in large-ion lithophile elements. The mafic rocks are thus inferred to derive from enriched subcontinental lithospheric mantle. The petrographic and geochemical characteristics of the Xiaotikanlike Formation volcanic rocks indicate that they were generated under a post-collisional regime. Therefore, the final collision between the Tarim Craton and the Kazakhstan–Yili terrane took place before Early Permian, most probably at Late Carboniferous. Differing from other tectonic units of the CAOB, the recycling of ancient lithospheric crust played a significant role in the continental growth of the STS Block.  相似文献   

8.
The Draïssa barite vein system in the Ougarta district is located in southwestern Algeria. It is the principal mineral deposit of economic interest of the area. The mineralization is hosted by Cambrian sedimentary rocks that unconformably overlie Precambrian formations. The mineralized structures consist mostly of barite and quartz with minor sulfide minerals and trend dominantly NE-SW, NW-SE, and E-W. Siliceous alteration zones are associated with the vein system. Samples of barite ore are characterized by low total REE contents ranging from 9 to 50 ppm and positive Eu (2–2.15 ppm) and Y (1.2–11.1 ppm) anomalies, indicating hydrothermal activity during mineralization. Halogen data of the barite show that the Cl/Br molar ratio is 189:571 and the Na/Br ratio is 34:376, indicating that the sulfur was derived from seawater. The Ba-enrichment trend in the volcanic rocks of Draïssa is interpreted as possible probable source of the Ba (424–3039 ppm Ba). It appears that the barite-quartz deposits were formed in two stages. Endogenous fluids deposited the primary vein materials, consisting of quartz associated with copper sulfides. Exogenous fluids (cold seawater) became heated during ascendant fluid movement. Mineralization was governed by convective motions and the barite and galena fillings were deposited in openings created by normal faulting.  相似文献   

9.
《International Geology Review》2012,54(12):1445-1461
We present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Xiaochuan gneissic granite intrusion, SE China, to constrain its petrogenesis and provide insights into early crustal evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/207Pb age of 1839 ±16 Ma, interpreted as the emplacement age of the Xiaochuan granite. Zircons have ?Hf(t) values ranging from –8.1 to 2.7 and T DM2 model ages from 2.23 to 3.03 Ga. The granites are strongly peraluminious (A/CNK = 1.14–1.41), with relatively high FeOt, TiO2, and CaO/Na2O, and low CaO, Al2O3/TiO2, and Rb/Sr values. In addition, they show strongly negative Ba, Sr, Nb, and Ta and positive Th and Pb anomalies in the primitive mantle-normalized spider diagram, similar to other Cathaysia Palaeoproterozoic S-type granites. The geochemical and Hf isotopic signatures suggest that the Xiaochuan gneissic granites were generated by partial melting of Archaean crustal materials in an intraplate extensional setting. Our results, combined with existing geochronological data, further demonstrate that the Wuyishan terrane is underlain by Palaeoproterozoic crystalline basement.  相似文献   

10.
Early Ordovician A-type granites in the northeastern (NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region. This research presents new zircon U–Pb ages and whole-rock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2O compositions and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous feature with A/CNK values of 0.98–1.14. The rocks have a ∑REE composition of 249.98–423.94 ppm, and are enriched in LREE with (La/Yb)N values of 2.87–9.87, and display obvious Eu anomalies (δEu?=?0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr?+?Y?+?Nb?+?Ce values (324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb (7.98–24.19) and Y/Nb (1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and (Ho/Yb)N ratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing’an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust. We suggest that the Paleo-Asian Ocean plate between the Xing’an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.  相似文献   

11.
ABSTRACT

The Franciscan Yolla Bolly terrane of the NE California Coast Ranges consists mainly of quartzose metagreywackes containing sparse high-pressure/low-temperature (HP/LT) neoblastic minerals, including ubiquitous lawsonite. Some Yolla Bolly rocks also contain one or more of the newly grown phases, pumpellyite, aragonite, glaucophane, and/or jadeitic pyroxene. These blueschist-facies metasandstones recrystallized under physical conditions of ~200–300°C and ~8 kbar at subduction-zone depths approaching 30 km. Petrologically similar Franciscan metaclastic-rich map units – Yolla Bolly terrane-like rocks, here designated the ‘YB’ unit – crop out in the central and southern California Coast Ranges. Recently published detrital zircon U?Pb SIMS and LA-ICPMS data for 19 ‘YB’ metagreywackes indicate maximum ages of formation as follows: ~110–115 Ma (8) in the NE California Coast Ranges; ~95–107 Ma (7) in the San Francisco Bay area + Diablo Range; and ~85–92 Ma (4) in the dextrally offset Nacimiento Block. These fault-bounded ‘YB’ strata do not constitute coeval parts of a single tectonostratigraphic unit. Instead the term tectonometamorphic is proposed for such time-transgressive map units. Based on the current and likely Cretaceous 30° angular divergence between NS-palaeomagnetic stripes of the Farallon oceanic plate and the NNW-trending California convergent margin, I infer that arrival at the arc margin and underflow of a relatively thick segment of oceanic crust and its largely clastic sedimentary blanket may have resulted in progressive southeastward migration of an accreted, subducted, then exhumed HP/LT metagreywacke section. During the ~30 million year interval, ~115–85 Ma, the locus of ‘YB’ accretion, underflow, and tectonic regurgitation evidently moved SE along an ~1000 km stretch of the accretionary margin of western California.  相似文献   

12.
Barite and barium concentrations in bottom sediments and coral skeletons from the vicinity of the hydrocarbon exploration well drilled in 1992–1993 in the Træna Deep, Norwegian Sea have been studied to assess the spreading of the drilling mud and related ecological effects on Lophelia petrusa coral reefs. Sand size barite crystals derived from the drilling mud and elevated Ba concentrations in surface (0–2 cm) sediments were found up to 4 km from the exploration drilling site. 210Pb-dating results on sediment cores indicate that Ba-rich surface intervals (0–2 cm) record ca. 20 years of sedimentation history, and connect Ba enrichment with exploration drilling. The geographic distribution of Ba contents in sediments allowed the reconstruction of the drilling mud dispersal pattern showing transport eastward from the drilling site, consistent with the prevailing current directions. The presence of relatively coarse-grained sediments and barite crystals trapped in coral polyps, ca. 500 m down current from the drilling site, reflects the elevated turbulence and sediment supply during the drilling activity. This elevated sediment dispersion likely placed a stress upon the coral reefs, but due to strong currents that effectively dilute episodic drilling waste and sediment discharges, the damage does not appear significant.  相似文献   

13.
ABSTRACT

Previous study of subducted continental crust within the Luliang Shan terrane in Northwest China has documented metasomatic formation of thick, hydrated phengite + garnet-rich selvages at the interface between mafic eclogite blocks and quartzofeldspathic host gneiss. Whole rock concentrations of Cs and Ba within the selvage are enriched by two orders of magnitude relative to the eclogite blocks and host gneiss. We performed in situ ion microprobe analyses of Li, Be, B, Rb, Sr, Cs and Ba and δ11B of phengite within the Luliang Shane terrane to better constrain the source(s) of the infiltrating fluid. The phengite within the selvage are enriched in Li, Cs and Ba and yield δ11B values between ?30‰ and ?9‰, values that are lower than mantle values. High Ba/Rb, Cs/Rb coupled with low B/Be, B/Li and highly negative δ11B values indicate that the high-pressure fluid that formed the selvage was derived from highly devolatilized rocks within the subduction channel. In contrast, muscovite, which crystallized in the adjacent host gneiss during a subsequent lower pressure phase of fluid infiltration at approximately 0.9 GPa depths, has much lower Li, Cs and Ba relative to the high-pressure phengite. These retrograde muscovite have very high concentrations of B (up to 5500 ppm) and Be (up to 50 ppm) and high (?2 to +8‰) δ11B values that are consistent with crystallization from a fluid derived from shallower and less devolatilized regions of the subduction zone. Additional host gneiss samples, regionally distributed and kilometres away from the studied area lack the B-rich signature and indicate that the late stage fluids were likely localized to the region near the studied traverse.  相似文献   

14.
A new LA-ICP-MS crystallization age of 370?±?8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.  相似文献   

15.
In western Victoria, a widespread stratiform style of gold enrichment in Palaeozoic black mudstone and chert—clearly different from the classic mesothermal quartz vein deposits of the Victorian goldfields—has been confirmed by whole-rock geochemistry and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). This enrichment pre-dates compaction, deformation and low-grade metamorphism of the sedimentary host-rocks, and therefore possibly developed diagenetically during slow deposition of the thin carbonaceous black mudstone beds and the thinner layers of chert. These paired strata have been documented at many locations in three regional outcrop areas of chevron-folded Cambrian and Lower Ordovician metasediments in the Stawell and Bendigo Zones, where they are interbedded with quartz-rich turbidites. The layers were named ‘indicators’ by the early miners, who found locally rich nuggety gold deposits at intersections between these layers and mesothermal quartz veins. Gold is present in euhedral pyrite crystals in both black shale and chert. LA-ICPMS analysis of individual pyrite crystals in the indicator beds shows that pyrite is enriched in Au, As, Sb, Se, Te and Bi. The Au content of pyrite varies from 0.03 to 2.69 ppm with a mean of 0.58 ppm and shows a positive correlation with As, which varies from 1000 to 6000 ppm. Many pyrite crystals show enrichment of gold in their cores and depletion in their rims, confirming the likely syngenetic or syndiagenetic accumulation of gold during pyrite formation in the sediments. Prior to regional metamorphism, folding and faulting, the many indicator strata in the outcrop areas were parts of an extensive marine sequence of Late Cambrian and Early Ordovician age. The former primary source of this mineralisation is considered to have been one or more contemporaneously exhalative submarine hydrothermal systems. Thus, the older Palaeozoic sediments of the western Lachlan Fold Belt were significantly enriched in syngenetic gold in the Early Palaeozoic, at least 40 million years before emplacement of the quartz – gold vein deposits of the goldfields.  相似文献   

16.
《Gondwana Research》2014,25(1):190-203
Peninsular India forms a keystone in Gondwana, linking the East African and Malagasy orogens with Ediacaran–Cambrian orogenic belts in Sri Lanka and the Lützow Holm Bay region of Antarctica with similar aged belts in Mozambique, Malawi and Zambia. Ediacaran–Cambrian metamorphism and deformation in the Southern Granulite Terrane (SGT) reflect the past tectonic setting of this region as the leading vertex of Neoproterozoic India as it collided with Azania, the Congo–Tanzania–Bangweulu Block and Kalahari on one side and the Australia/Mawson continent on the other. The high-grade terranes of southern India are made up of four main tectonic units; from north to south these are a) the Salem Block, b) the Madurai Block, c) the Trivandrum Block, and d) the Nagercoil Block. The Salem Block is essentially the metamorphosed Dharwar craton and is bound to the south by the Palghat-Cauvery shear system — here interpreted as a terrane boundary and the Mozambique Ocean suture. The Madurai Block is interpreted as a continuation of the Antananarivo Block (and overlying Palaeoproterozoic sedimentary sequence — the Itremo Group) of Madagascar and a part of the Neoproterozoic microcontinent Azania. The boundary between this and the Trivandrum Block is the Achankovil Zone, that here is not interpreted as a terrane boundary, but may represent an Ediacaran rift zone reactivated in latest Ediacaran–Cambrian times.  相似文献   

17.
《Gondwana Research》2013,24(4):1581-1598
This review synthesizes the Proterozoic and early Paleozoic geology of Tasmania, Bass Strait and western and central Victoria. We examine the many different conflicting hypotheses that have been proposed to solve the paradoxical relationships between Tasmanian geology and that of mainland Australia, most notably the prevalence of Proterozoic basement of western and central Tasmania, while immediately across Bass Strait evidence of Proterozoic rocks is much more cryptic. We conclude that the Selwyn block model is the most satisfactory hypothesis to date, since it fits best with the obvious patterns in the magnetic and gravity data. This model proposes that the central Victorian Melbourne Zone is underlain by the northern extension of thin Tasmanian Proterozoic and Cambrian crust under Bass Strait, and that the Silurian to Middle Devonian Melbourne Zone was shortened along a décollement during the Tabberabberan Orogeny. The Ordovician rocks of eastern Tasmania correlate more closely with the Tabberabbera Zone than the Melbourne Zone in Victoria; however the Silurian and Devonian correlations are less certain. Major unresolved issues are the origins of the Proterozoic and Early Cambrian lithostratigraphic packages, tectonic models for their assembly during the Tyennan Orogeny, and how these models fit with those for mainland Australia.  相似文献   

18.
Post-collisional (23–8 Ma), potassium-rich (including ultrapotassic and potassic) mafic magmatic rocks occur within the north–south-trending Xuruco lake–Dangre Yongcuo lake (XDY) rift in the Lhasa terrane of the southern Tibetan Plateau, forming an approximately 130-km-long semi-continuous magmatic belt. They include both extrusive and intrusive facies. Major and trace element and Sr–Nd–Pb isotopic data are presented for all of the known exposures within the XDY rift. The potassium-rich, mafic igneous rocks are characterized by high MgO (5.9–10.8 wt.%), K2O (4.81–10.68 wt.%), Ba (1,782–5,618 ppm) and Th (81.3–327.4 ppm) contents, and relatively high SiO2 (52.76–58.32 wt.%) and Al2O3 (11.10–13.67 wt.%). Initial Sr isotopic compositions are extremely radiogenic (0.712600–0.736157), combined with low (206Pb/204Pb) i (18.28–18.96) and (143Nd/144Nd) i (0.511781–0.512046). Chondrite-normalized rare earth element patterns display relatively weak negative Eu anomalies. Primitive mantle-normalized incompatible trace element patterns exhibit strong enrichments in large ion lithophile elements relative to high-field-strength elements and display strongly negative Ta–Nb–Ti anomalies. The combined major and trace element and Sr–Nd–Pb isotopic characteristics of the K-rich igneous rocks suggest that the primitive magmas were produced by 1–10 % partial melting of an asthenospheric mantle source enriched by both fluids and partial melts derived from Indian passive continental margin sediments subducted into the shallow mantle as a consequence of the northward underthrusting of the Indian continental lithosphere beneath Tibet since the India–Asia collision at ~55 Ma. The best-fit model results indicate that a melt with trace element characteristics similar to those of the K-rich rocks could be generated by 8–10 % partial melting of a metasomatized mantle source in the south and 1–2 % melting in the north of the XDY rift. Trace element and Sr–Nd–Pb isotopic modeling indicate that the proportion of fluid derived from the subducted sediments, for which we use as a proxy the Higher Himalayan Crystalline Sequence (HHCS), in the mantle source region increases from north (rear-arc) to south (front-arc), ranging from 0 to 5 %, respectively. Correspondingly, the proportion of the melt derived from the subducted HHCS in the source increases from north (2 %) to south (15 %). The increasing proportion of the fluid and melt component in the mantle source from north to south, together with a southward decreasing trend in the age of the K-rich magmatism within the XDY rift, is inferred to reflect rollback of the subducted Indian lithospheric mantle slab during the period 25–8 Ma. Slab rollback may be linked to a decreasing convergence rate between India and Asia. As a consequence of slab rollback at 25 Ma beneath the Lhasa terrane, its geodynamic setting was transformed from a convergent (55–25 Ma) to an extensional (25–8 Ma) regime. The occurrence of K-rich magmatism during the period 25–8 Ma is a consequence of the decompression melting of an enriched mantle source, which may signal the onset of extension in the southern Tibetan Plateau and provide a petrological record of the extension process.  相似文献   

19.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

20.
New U-Pb geochronology is used to refine the provenance and evolution of northwest Gondwana Pan-African terranes preserved in the South Carpathians of Romania. The Dr?g?an terrane of Avalonian affinity, from the Danubian domain of the South Carpathians originated in the Panthalassa Ocean and accreted to the Amazonian part of Rodinia not much before 800 Ma, when the F?ge?el orthogneiss was intruded, at around 807–810 Ma. After this event no other Neoproterozoic magmatic pulse is known in the basement of the Dr?g?an terrane. The Ganderian type Lainici-P?iu? terrane from the same domain of the South Carpathians, recorded magmatic pulses at 782 Ma, 739 Ma, 708 Ma, 639 Ma, 600–587 Ma and 574–568 Ma. The East Cadomian Sebe?-Lotru terrane from the Getic domain of the South Carpathians recorded magmatic pulses at 817 Ma, 768 Ma, 685 Ma, 620 Ma, 584 Ma and 550 Ma. Post 630 Ma the northwestern Gondwana margin evolved as an active continental margin at least until 550 Ma, but the pre-630 Ma magmatism could be associated to some island arcs docked with different pre-Gondwanan continental fragments. Independent of the tectonic setting, the post 750 Ma orogens dated in the basement of the peri-Gondwanan terranes are discussed in the frame of the Cadomian orogens, as constituents of the Pan-African orogens in a broader sense. The detrital zircon may also record magmatic pulses from Pan-African orogens other than the Cadomian ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号