首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Precambrian Research》2007,152(3-4):93-118
George V Land (Antarctica) includes the boundary between Late Archean–Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross–Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar–39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar–39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ∼1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (∼180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro–Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar–39Ar ages from ∼530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.  相似文献   

2.
LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.  相似文献   

3.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   

4.
Apatite U-Pb thermochronology was applied to granitoid basement samples across the northern Gawler Craton to unravel the Proterozoic, post-orogenic, cooling history and to examine the role of major fault zones during cooling. Our observations indicate that cooling following the ~2500 Ma Sleaford Orogeny and ~1700 Ma Kimban Orogeny is restricted to the Christie and Wilgena Domains of the central northern Gawler Craton. The northern Gawler Craton mainly records post-Hiltaba Event(~1590 Ma) U-Pb cooling ages. Cooling following the ~1560 Ma Kararan Orogeny is preserved within the Coober Pedy Ridge,Nawa Domain and along major shear zones within the south-western Fowler Domain. The Nawa Domain samples preserve U-Pb cooling ages that are 150 Ma younger than the samples within the Coober Pedy Ridge and Fowler Domain, indicating that later(~1300 Ma) fault movement within the Nawa Domain facilitated cooling of these samples, caused by arc collision in the Madura Province of eastern Western Australia. When compared to~(40)Ar/~(39) Ar from muscovite, biotite and hornblende, our new apatite U-Pb ages correlate well, particularly in regions of higher data density. Our data also preserve a progressive younging of U-Pb ages from the nucleus of the craton to the periphery with a stark contrast in U-Pb ages across major structures such as the Karari Shear Zone and the Southern Overthrust, which indicates the timing of reactivation of these major crustal structures. Although this interpolation was based solely on thermochronological data and did not take into account structural or other geological data, these maps are consistent with the structural architecture of the Gawler Craton and reveal the thermal footprint of known tectonic and magmatic events in the Gawler Craton.  相似文献   

5.
Provenance data from Paleoproterozoic and possible Archean sedimentary units in the central eastern Gawler Craton in southern Australia form part of a growing dataset suggesting that the Gawler Craton shares important basin formation and tectonic time lines with the adjacent Curnamona Province and the Isan Inlier in northern Australia. U–Pb dating of detrital zircons from the Eba Formation, previously mapped as the Paleoproterozoic Tarcoola Formation, yields exclusively Archean ages (ca 3300–2530 Ma), which are consistent with evolved whole-rock Nd and zircon Hf isotopic data. The absence of Paleoproterozoic detrital grains in a number of sequences (including the Eba Formation), despite the proximity of voluminous Paleoproterozoic rock units, suggests that the Eba Formation may be part of a Neoarchean or early Paleoproterozoic cover sequence derived from erosion of a multi-aged Archean source region. The ca 1715 Ma Labyrinth Formation, unconformably overlying the Eba Formation, shares similar depositional timing with other basin systems in the Gawler Craton and the adjacent Curnamona Province. Detrital zircon ages in the Labyrinth Formation range from Neoarchean to Paleoproterozoic, and are consistent with derivation from >1715 Ma components of the Gawler Craton. Zircon Hf and whole-rock Nd isotopic data also suggest a source region with a mixed crustal evolution (εNd –6 to –4.5), consistent with what is known about the Gawler Craton. Compared with the lower Willyama Supergroup in the adjacent Curnamona Province, the Labyrinth Formation has a source more obviously reconcilable with the Gawler Craton. Stratigraphically overlying the Eba and Labyrinth Formations is the 1656 Ma Tarcoola Formation. Zircon Hf and whole-rock Nd isotopic data indicate that the Tarcoola Formation was sourced from comparatively juvenile rocks (εNd –4.1 to + 0.5). The timing of Tarcoola Formation deposition is similar to the juvenile upper Willyama Supergroup, further strengthening the stratigraphic links between the Gawler and Curnamona domains. Additionally, the Tarcoola Formation is similar in age to extensive units in the Mt Isa and Georgetown regions in northern Australia, also shown to be isotopically juvenile. These juvenile sedimentary rocks contrast with the evolved underlying sequences and hint at the existence of a large-scale ca 1650 Ma juvenile basin system in eastern Proterozoic Australia.  相似文献   

6.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

7.
The emplacement of the ca 1590–1575 Ma Hiltaba Suite granites records a large magmatic event throughout the Gawler Craton, South Australia. The Hiltaba Suite granites intrude the highly deformed Archaean‐Palaeoproterozoic rocks throughout the craton nuclei. Geophysical interpretation of the poorly exposed central western Gawler Craton suggests that the region can be divided into several distinct domains that are bounded by major shear zones, exhibiting a sequence of overprinting relationships. The north‐trending Yarlbrinda Shear Zone merges into the east‐trending Yerda Shear Zone that, in turn, merges into the northeast‐trending Coorabie Shear Zone. Several poorly exposed Hiltaba Suite granite plutons occur within a wide zone of crustal shearing that is bounded to the north by the Yerda Shear Zone and to the south by the Oolabinnia Shear Zone. This wide zone of crustal shearing is interpreted as a major zone of synmagmatic dextral strike‐slip movement that facilitated the ascent of Hiltaba Suite granite intrusions to the upper crust. The aeromagnetic and gravity data reveal that the intrusions are ~15–25 km in diameter. Forward modelling of the geophysical data shows that the intrusions have a tabular geometry and are less than 6 km deep.  相似文献   

8.
The Terre Adélie Craton displays superimposed strain fields related to the Neoarchean (2.6–2.4 Ga, M1) and Paleo-Mesoproterozoic (1.7–1.5 Ga, M2) metamorphic events. M1 is a regional granulite facies event, constrained by P-T modelling at ~0.8–1.0 GPa – 800–850 °C, followed by a decompressional retrogression in the upper amphibolite facies at ~0.6 GPa – 750 °C. M2 Stage 1 P-T peak is constrained at 0.6–0.7 GPa – 670–700 °C, followed by a steep P-T path down to 0.3 GPa – 550 °C. Retrogression after M2 PT peak occurred in a context of dextral shearing along the Mertz Shear Zone along with thrust motions within the eastern Terre Adélie Craton. In this paper, we present a series of 63 new 40Ar/39Ar ages of biotite and amphibole pairs in mafic rocks from a complete traverse of the Terre Adélie Craton. 40Ar/39Ar dating constrains M2 amphibolite facies metamorphism at a regional scale between 1700 and 1650 Ma, during stage 1 peak metamorphism. During retrogression, lower amphibolite facies recrystallization mainly occurred along vertical shear zones and mafic dykes between 1650 and 1600 Ma (Stage 2), followed by amphibolite to greenschist facies metamorphism until after 1500 Ma (Stage 3). At the scale of the Mawson continent, this event is related to the growth of an active margin above an oblique subduction zone. The supra-subduction model best explains opening of Dumont D'Urville and Hunter basins at 1.71 Ga followed by their rapid closure and metamorphism at 1.70 Ga. In this context, episodic shear zone reactivation and magmatic dyke emplacement led to a partial reequilibration of the 40Ar/39Ar system until <1500 Ma. This latter phase of mafic magmatism largely coincides with a hot spot event at the scale of the Gawler Craton and western Laurentia paleocontinent.  相似文献   

9.
The Tabletop Domain of the Rudall Province has been long thought an exotic entity to the West Australian Craton. Recent re-evaluation of this interpretation suggests otherwise, but is founded on limited data. This study presents the first comprehensive, integrated U–Pb geochronology and Hf-isotope analysis of igneous and metasedimentary rocks from the Tabletop Domain of the eastern Rudall Province. Field observations, geochronology and isotope results confirm an endemic relationship between the Tabletop Domain and the West Australian Craton (WAC), and show that the Tabletop Domain underwent a similar Archean–Paleoproterozoic history to the western Rudall Province. The central Tabletop Domain comprises Archean–Paleoproterozoic gneissic rocks with three main age components. Paleo–Neoarchean (ca 3400–2800 Ma) detritus is observed in metasedimentary rocks and was likely sourced from the East Pilbara Craton. Protoliths to mafic gneiss and metasedimentary rocks are interpreted to have been emplaced and deposited during the early Paleoproterozoic (ca 2400–2300 Ma), and exhibit age and isotopic affinities to the Capricorn Orogen basement (Glenburgh Terrane). Mid–late Paleoproterozoic mafic and felsic magmatism (ca 1880–1750 Ma) is assigned to the Kalkan Supersuite, which is exposed in the western Rudall Province. The Kalkan Supersuite provided the main source of detritus for mid–late Paleoproterozoic metasedimentary rocks in the Tabletop Domain. Similarities in the age and Hf-isotope compositions of detrital zircon from these metasedimentary rocks and Capricorn Orogeny basin sediments suggests that a regionally extensive, linked basin system may have spanned the northern WAC at this time. The Tabletop Domain records evidence for two metamorphic events. Mid–late Paleoproterozoic deformation (ca 1770–1750 Ma) was high-grade, regional and involved the development of gneissic fabrics. In contrast, early Mesoproterozoic (ca 1580 Ma) high-grade deformation was localised and associated with more widespread, late-stage, greenschist facies alteration. These new findings highlight that the Tabletop Domain experienced a much higher grade of deformation than previously assumed, with a Paleoproterozoic metamorphic history similar to that of the western Rudall Province.  相似文献   

10.
The Olympic Cu–Au Province, Gawler Craton, is host to the Olympic Dam and Prominent Hill iron oxide–copper–gold (IOCG) deposits. Both of these deposits and the region between the two are covered by Neoproterozoic to Cenozoic sediment, making inferences about prospectivity in this portion of the Olympic Domain reliant on geophysical interpretation and sparse drill hole information. We present new U–Pb zircon sensitive high resolution ion microprobe (SHRIMP) dates from two basement intersecting drill holes in the region between Olympic Dam and Prominent Hill that show bimodal volcanism occurred at 2555 ± 5 Ma, and was followed by intrusion of tonalite at 2529 ± 6 Ma. Laser 40Ar/39Ar dating of biotite and muscovite from the tonalite yields ages around ca 2000 Ma, consistent with slow cooling trends observed in Archean rocks elsewhere in the northern Gawler Craton. Step heating experiments on K-feldspar from the same tonalite yields an age spectrum with older ages around 1740 Ma from the highest temperature steps becoming progressively younger to a minimum of 1565 Ma in the lowest temperature heating steps; this is consistent with either Paleoproterozic cooling to final closure of K-feldspar by 1565 Ma or a reheating event at ca 1565 Ma, with the latter more likely, given the evidence for sub-solidus alteration of the K-feldspar. Sericite within hematite–sericite–chlorite altered portions of the tonalite yield a poorly defined age of ca 1.6 Ga. Taken together the 40Ar/39Ar data providing evidence for a fluid event affecting this region between Olympic Dam and Prominent Hill during the early Mesoproterozoic. Low temperature quartz–carbonate–adularia veins occur in <10 cm wide fractures within basalt in one drill hole in this region. Adularia from these veins yields 40Ar/39Ar ages that span from ca 1.3–1.1 Ga. This age range is interpreted to approximate either the timing of adularia formation during a hydrothermal event or the timing of resetting of the 40Ar/39Ar systematics within the adularia as a result of fluid flow in this sample. This is evidence for a mid-Mesoproterozoic fluid event in the Gawler Craton and necessitates a reconsideration of the long-term stability of the craton, as it appears to have been affected, at least locally, by fluid flow related to a much larger event within the Australian continent, the Musgrave Orogeny.  相似文献   

11.
Geochemical and Sm‐Nd isotopic data, and 19 ion‐microprobe U‐Pb zircon dates are reported for gneiss and granite from the eastern part of the Albany‐Fraser Orogen. The orogen is dominated by granitic rocks derived from sources containing both Late Archaean and mantle‐derived components. Four major plutonic episodes have been identified at ca 2630 Ma, 1700–1600 Ma, ca 1300 Ma and ca 1160 Ma. Orthogneiss, largely derived from ca 2630 Ma and 1700–1600 Ma granitic precursors, forms a belt along the southeastern margin of the Yilgarn Craton. These rocks, together with gabbro of the Fraser Complex, were intruded by granitic magmas and metamorphosed in the granulite facies at ca 1300 Ma. They were then rapidly uplifted and transported westward along low‐angle thrust faults over the southeastern margin of the Yilgarn Craton. Between ca 1190 and 1130 Ma, granitic magmas were intruded throughout the eastern part of the orogen. These new data are integrated into a review of the geological evolution of the Albany‐Fraser Orogen and adjacent margin of eastern Antarctica, and possibly related rocks in the Musgrave Complex and Gawler Craton.  相似文献   

12.
A temperature‐time history for the granulite‐hosted Challenger gold deposit in the Christie Domain of the Gawler Craton, South Australia, has been derived using a range of isotopic decay systems including U–Pb, Sm–Nd, Rb–Sr and 40Ar/39Ar. Nd model ages and detrital zircon ages suggest a protolith age of ca 2900 Ma for the Challenger Gneiss. Gold mineralisation was probably introduced under greenschist/amphibolite‐facies conditions towards the end of the Archaean, between 2800 and 2550 Ma. However, evidence for the exact age and P‐T conditions of this event was almost completely removed by granulite‐facies metamorphism during the Sleafordian Orogeny, which peaked around ca 2447 Ma. Cooling to 350°C occurred before 2060 Ma. It is possible that the Christie Domain was then subject to further sedimentation and volcanism in the period ca 2000–1800 Ma before reburial and a second period of orogeny around ca 1710–1615 Ma. During this second orogeny, the eastern Christie Domain experienced heterogeneous fluid‐induced retrograde metamorphism at lower greenschist‐ to amphibolite‐facies conditions, with metamorphic grade varying between structural blocks. At this time, the Challenger deposit was subject to greenschist‐facies conditions (not significantly hotter than 350°C), while at Mt Christie (50 km to the south) lower amphibolite‐facies conditions prevailed and to the west the Ifould Block experienced extensive plutonism. A third very low‐temperature thermal pulse around ca 1531 Ma, which reached ~ 150–200°C, is recorded at the Challenger deposit. It is likely that the global Grenvillian Orogeny (1300–1000 Ma) was a major period of domain exhumation and juxtaposition.  相似文献   

13.
Abstract

Combined in situ monazite dating, mineral equilibria modelling and zircon U–Pb detrital zircon analysis provide insight into the pressure–temperature–time (PTt) evolution of the western Gawler Craton. In the Nawa Domain, pelitic and quartzo-feldspathic gneisses were deposited after ca 1760?Ma and record high-grade metamorphic conditions of ~7.5?kbar and 850?°C at ca 1730?Ma. Post-peak microstructures, including partial plagioclase coronae and late biotite around garnet, and subtle retrograde garnet compositional zoning, suggest that these rocks cooled along a shallow down-pressure trajectory across an elevated dry solidus. In the northwest Fowler Domain (Colona Block), monazite grains from pelitic gneisses record two stages of growth/recrystallisation interpreted to represent discrete parts of the P–T path: (1) ca 1710?Ma monazite growth during prograde to peak conditions, and (2) ca 1690?Ma Y-enriched monazite growth/recrystallisation during partial garnet breakdown and cooling towards the solidus. Relict prograde growth zoning in garnet suggests rocks underwent a steep up-P path to peak conditions of ~8?kbar at 800?°C. The new P–T–t results suggest basement rocks of the southwestern Nawa and northwestern Fowler were buried to depths of 20–25?km during the Kimban Orogeny, ca 10 Myrs after the sedimentary precursors were deposited. The P–T path for the Kimban Orogeny is broadly anti-clockwise, suggesting that at least the early phase of this event was associated with extension. Exhumation of rocks from both the southwestern Nawa and northwestern Fowler domains may have occurred during the waning stages of the Kimban Orogeny (<ca 1690?Ma). The limited low-grade overprint in these rocks may be explained by a mid-to-upper crustal position for these rocks during the subsequent Kararan Orogeny. Aluminous quartz-feldspathic gneiss of the Nundroo Block in the eastern Fowler Domain records peak conditions of ~7?kbar at 800?°C. Monazite grains from the Nundroo Block are dominated by an age peak at ca 1590?Ma, although the presence of some older ages up to ca 1690?Ma, possibly reflect partial resetting of older monazite domains. The PTt conditions suggest these rocks were buried to 20–25?km at ca 1590?Ma during the Kararan Orogeny. This high-grade metamorphism in the Nundroo Block is a mid-crustal expression of the same thermal anomaly that caused magmatism in the central-eastern Gawler Craton. Juxtaposition of rocks affected by the Kimban and Kararan orogenic events in the western Gawler Craton was controlled by lithospheric-scale shear zones, some of which have facilitated ~20 kilometres of exhumation.  相似文献   

14.
Apatite and biotite from dolomite?ankerite and calcite?dolomite carbonatite dikes emplaced into the Paleoproterozoic metamorphic rock complex in the southern part of the Siberian Craton are dated by the U–Pb (LA-ICP-MS) and 40Ar–39Ar methods, respectively. Proceeding from the lower intercept of discordia with concordia, the age of apatite from calcite?dolomite carbonatite is estimated to be 972 ± 21 Ma and that for apatite from dolomite?ankerite carbonatite, as 929 ± 37 Ma. Values derived from their upper intercept have no geological sense. The ages obtained for biotite by the 40Ar–39Ar method are 965 ± 9 and 975 ± 14 Ma. It means that the formation of carbonatites reflects the earliest phases of the Neoproterozoic stage in extension of the continental lithosphere.  相似文献   

15.
The Rei Bouba Group is a sedimentary and volcanic sequence (750–?650 Ma), regarded as a remnant of a Pan-African (back-arc?) orogenic basin that separated a remobilized Paleoproterozoic crust from an accretionary area (Poli Complex: 800-650 Ma). The latter was subjected to early deformation (D1) and intruded by calc-alkalic plutons (670 Ma). Transpressive tectonics and major thrusting, with emplacement of synkinematic granite, occurred at ca 630 Ma (D2-3) and a late compression (D4), with emplacement of calc-alkalic granite, occurred at ca 570 Ma. The Tcholliré Shear Zone is regarded as part of the major boundary between a recently accreted crust and the remobilized margin of the Congo Craton.  相似文献   

16.
The Cariewerloo Basin formed in the Mesoproterozoic following assembly of the Gawler Craton, South Australia, and was filled by arenaceous redbeds of the Pandurra Formation. While previous regional-scale work reveals a basin with similar size and sedimentary fill to the Proterozoic Athabasca and Kombolgie basins that host unconformity-related uranium deposits, few details of the Cariewerloo Basin are known. In this study, stratigraphy, petrography, lithogeochemistry, stable isotope geochemistry and 40Ar/39Ar geochronology are integrated to clarify the depositional history of the Pandurra Formation, and to assess fluid events in the basin that could be linked to the formation of uranium deposits. In the study area, the Pandurra Formation was deposited in two eastward-thickening packages that terminate at faulted basement uplifts, interpreted as half-grabens that formed in a continental rift system as the eastern Gawler Craton underwent extension. Deposition occurred between 1575 Ma (latest Hiltaba Suite age) and ca 1490 Ma, the 40Ar/39Ar age of diagenetic illite in the basal Pandurra. Diagenesis involving fluids having δ18O and δ2H values between –2.1 and 3.6‰, and between –66 and –8‰, respectively, occurred at around 150°C. Protracted diagenesis preferentially occurred in the upper Pandurra Formation based on petrography and Pearce Element Ratios that show complete replacement of detrital lithic and feldspathic grains by diagenetic phyllosilicates, and younger 40Ar/39Ar ages between ca 1330 and 1200 Ma that record fluid events later into basin history. Conversely, the basal Pandurra Formation shows better preservation of detrital grains, and older 40Ar/39Ar ages around 1450 Ma that suggest these strata became closed to fluid flow earlier in basin history. Although, based on O-isotope ratios, fluid–rock interaction did not occur in the Cariewerloo Basin to the same extent as that in the Athabasca or Kombolgie basins, it is possible that a uranium deposit formed where the upper Pandurra Formation was in contact with metasedimentary basement units outside the present basin margins.  相似文献   

17.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

18.
The Mount Woods Domain in the Gawler Craton, South Australia records a complex tectonic evolution spanning the Palaeoproterozoic and Mesoproterozoic. The regional structural architecture is interpreted to represent a partially preserved metamorphic core complex that developed during the ~1600–1580 Ma Hiltaba Event, making this one of the oldest known core complexes on Earth. The lower plate is preserved in the central Mount Woods Domain, which comprises the Mount Woods Metamorphics. These rocks yield a detrital zircon maximum depositional age of ~1860 Ma and were polydeformed and metamorphosed to upper amphibolite to granulite facies during the ~1740–1690 Ma Kimban Orogeny. The upper plate comprises a younger succession (the Skylark Metasediments) deposited at ~1750 Ma. Within the upper plate, sedimentary and volcanic successions of the Gawler Range Volcanics were deposited into half graben that evolved during brittle normal faulting. The Skylark Shear Zone represents the basal detachment fault separating the upper and lower plate of the core complex. The geometry of normal faults in the upper plate is consistent with NE-SW extension.Both the upper and lower plates are intruded by ~1795–1575 Ma Hiltaba Suite granitic and mafic plutons. The core complex was extensively modified during the ~1570–1540 Ma Kararan Orogeny. Exhumation of the western and eastern Mount Woods Domain is indicated by new 40Ar/39Ar biotite cooling ages that show that rock packages in the central Mount Woods Domain cooled past ~300 °C ± 50 °C at ~1560 Ma, which was ~20 million years before equivalent cooling in the western and eastern Mount Woods Domain. Exhumation was associated with activity along major syn-Kararan Orogeny faults.  相似文献   

19.
Southern Cross, where gold deposits are sited in narrow greenstone belts surrounding granitoid domes, was one of the earliest gold mining centres in Western Australia. SHRIMP U–Pb zircon and Pb‐isotope studies of the largest granitoid dome, the Ghooli Dome (80 × 40 km), provide important constraints on the crustal evolution and structural history of the central part of the Archaean Yilgarn Craton, Western Australia, which includes Southern Cross. The north‐northwest‐south‐southeast‐oriented ovoid Ghooli Dome has a broadly concentric foliation that is subhorizontal or gently dipping in its central parts and subvertical along its margins. Foliated granitoids in the dome are dated at ca 2724 ± 5 and 2688 ± 3 Ma using the SHRIMP U–Pb zircon and Pb–Pb isochron methods, respectively. These new data, together with the published SHRIMP U–Pb zircon age of 2691 ± 7 Ma at another locality, 20 km from the centre of the Koolyanobbing Shear Zone, suggest that the Ghooli Dome was emplaced at ca 2.72–2.69 Ga. Because the Ghooli Dome and the other domes, which are enveloped by narrow greenstone belts, are cut by the >650 km‐long and 6–15 km‐wide Koolyanobbing Shear Zone, the ca 2.69 Ga age is interpreted as the maximum age of the last major movement on this structure. The pre‐2.69 Ga history, if any, of the shear zone remains unknown. The shear zone is intruded by an undeformed porphyritic granitoid which has a SHRIMP U–Pb zircon age of 2656 ± 4 Ma. This age is, thus, the minimum age of major movement along this shear zone. Post‐gold mineralisation pegmatitic‐leucogranite from the Nevoria gold mine has a SHRIMP U–Pb zircon age of 2634 ± 4 Ma, with xenocrystic zircon cores of ca 2893 ± 6 Ma, constraining the minimum age of gold mineralisation there to ca 2.63 Ga. The ca 2.72–2.69 Ga granitoids also contain ca 2.98 and 2.78 Ga xenocrystic zircon cores, suggesting an extensive crustal prehistory for their source. Whereas there is a general temporal relationship between the periods of older (ca 3.0 Ga) and younger (ca 2.80 and 2.73 Ga) volcanism and the older (2.98, 2.78 and 2.72–2.69 Ga) granitoid intrusions, there is no known volcanism temporally associated with the 2.65–2.63 Ga granitoid intrusions in the Yilgarn Craton. Other heat sources and/or tectonic processes, required for the generation of these intrusions, are interpreted to be related to a lithospheric delamination event related to continental collision.  相似文献   

20.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号