首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A recent high‐resolution record of Late‐glacial CO2 change from Dome Concordia in Antarctica reveals a trend of increasing CO2 across the Younger Dryas stadial (GS‐1). These results are in good agreement with previous Antarctic ice‐core records. However, they contrast markedly with a proxy CO2 record based on the stomatal approach to CO2 reconstruction, which records a ca. 70 ppm mean CO2 decline at the onset of GS‐1. To address these apparent discrepancies we tested the validity of the stomatal‐based CO2 reconstructions from Kråkenes by obtaining further proxy CO2 records based on a similar approach using fossil leaves from two independent lakes in Atlantic Canada. Our Late‐glacial CO2 reconstructions reveal an abrupt ca. 77 ppm decrease in atmospheric CO2 at the onset of the Younger Dryas stadial, which lagged climatic cooling by ca. 130 yr. Furthermore, the trends recorded in the most accurate high‐resolution ice‐core record of CO2, from Dome Concordia, can be reproduced from our stomatal‐based CO2 records, when time‐averaged by the mean age distribution of air contained within Dome Concordia ice (200 to 550 yr). If correct, our results indicate an abrupt drawdown of atmospheric CO2 within two centuries at the onset of GS‐1, suggesting that some re‐evaluation of the behaviour of atmospheric CO2 sinks and sources during times of rapid climatic change, such as the Late‐glacial, may be required. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The snowball Earth hypothesis: testing the limits of global change   总被引:10,自引:0,他引:10  
The gradual discovery that late Neoproterozoic ice sheets extended to sea level near the equator poses a palaeoenvironmental conundrum. Was the Earth's orbital obliquity > 60° (making the tropics colder than the poles) for 4.0 billion years following the lunar‐forming impact, or did climate cool globally for some reason to the point at which runaway ice‐albedo feedback created a `snowball' Earth? The high‐obliquity hypothesis does not account for major features of the Neoproterozoic glacial record such as the abrupt onsets and terminations of discrete glacial events, their close association with large (> 10‰) negative δ13C shifts in seawater proxies, the deposition of strange carbonate layers (`cap carbonates') globally during post‐glacial sea‐level rise, and the return of large sedimentary iron formations, after a 1.1 billion year hiatus, exclusively during glacial events. A snowball event, on the other hand, should begin and end abruptly, particularly at lower latitudes. It should last for millions of years, because outgassing must amass an intense greenhouse in order to overcome the ice albedo. A largely ice‐covered ocean should become anoxic and reduced iron should be widely transported in solution and precipitated as iron formation wherever oxygenic photosynthesis occurred, or upon deglaciation. The intense greenhouse ensures a transient post‐glacial regime of enhanced carbonate and silicate weathering, which should drive a flux of alkalinity that could quantitatively account for the world‐wide occurrence of cap carbonates. The resulting high rates of carbonate sedimentation, coupled with the kinetic isotope effect of transferring the CO2 burden to the ocean, should drive down the δ13C of seawater, as is observed. If cap carbonates are the `smoke' of a snowball Earth, what was the `gun'? In proposing the original Neoproterozoic snowball Earth hypothesis, Joe Kirschvink postulated that an unusual preponderance of land masses in the middle and low latitudes, consistent with palaeomagnetic evidence, set the stage for snowball events by raising the planetary albedo. Others had pointed out that silicate weathering would most likely be enhanced if many continents were in the tropics, resulting in lower atmospheric CO2 and a colder climate. Negative δ13C shifts of 10–20‰ precede glaciation in many regions, giving rise to speculation that the climate was destabilized by a growing dependency on greenhouse methane, stemming ultimately from the same unusual continental distribution. Given the existing palaeomagnetic, geochemical and geological evidence for late Neoproterozoic climatic shocks without parallel in the Phanerozoic, it seems inevitable that the history of life was impacted, perhaps profoundly so.  相似文献   

3.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

4.
It was shown that the history of the biosphere is closely related to processes caused by low solar luminosity. Solar radiation is insufficient to maintain the Earth’s surface temperature above the freezing point of water. Positive temperatures are kept owing to the presence of greenhouse gases in the atmosphere: CO2, CH4, and others. Certain stages in the development of the biosphere and climate are related to these effects. Methane was the main carbon-bearing gas in the primordial atmosphere. It compensated the low solar luminosity. Life originated under the reduced conditions of the early Earth. Methane-producing biota was formed. Methane remained to be the main greenhouse gas in the Archean. The release of molecular oxygen into the atmosphere 2.4 Ga ago resulted in the disruption of the established mechanism of the compensation of the low solar luminosity. Methane ceased to cause a significant greenhouse effect, and the content of carbon dioxide was insufficient to play this role. A global glaciation began and had lasted for approximately 200 million years. However, the increasing CO2 content in the atmosphere reached eventually a level sufficient for the compensation for the low solar luminosity. The glaciation period came to an end. Simultaneously, a conflict arose between the role of CO2 as a gas controlling the thermal regime of the planet and as an initial material for biota production. As long as the resource of biotic carbon was inferior to that of atmospheric CO2, the uptake of atmospheric CO2 related to sporadic increases in biologic production was insufficient for a significant change in the thermal regime. This was the reason for a long-term climate stabilization for 1.5 billion years. By 0.8 Ga, the resource of oceanic biota reached the level at which variations in the uptake of atmospheric CO2 related to variations in the production of organic and carbonate carbon became comparable with the resource of atmospheric CO2. Since then, an oscillatory equilibrium has been established between the intensity of biota development and climate-controlling CO2 content in the atmosphere. Glaciation and warming periods have alternated. These changes were triggered by various geologic events: intensification or attenuation of volcanism; growth, breakup, or migration of continents; large-scale magmatism; etc. A new relation between atmospheric CO2 and biotic carbon was established in response to the emergence of terrestrial biota and the appearance of massive buffers of organic carbon on land. The interrelation of the biosphere and climate changed.  相似文献   

5.
During the formation and development of glacial meltwater runoff, hydrochemical erosion is abundant, especially the hydrolysis of K/Na feldspar and carbonates, which can consume H+ in the water, promote the formation of bicarbonate by dissolving atmospheric CO2, and affect the regional carbon cycle. From July 21, 2015, to July 18, 2017, the CO2 concentration and flux were observed by the eddy covariance (EC) method in the relatively flat and open moraine cover area of Koxkar Glacier in western Mt. Tianshan, China. We found that: (1) atmospheric CO2 fluxes ranged from ??408.95 to 81.58 mmol m?2 day?1 (average ? 58.68 mmol m?2 day?1), suggesting that the study area is a significant carbon sink, (2) the CO2 flux footprint contribution areas were primarily within 150 m of the EC station, averaging total contribution rates of 93.30%, 91.39%, and 90.17% of the CO2 flux in the snow accumulation, snow melting, and glacial melting periods, respectively. Therefore, the contribution areas with significant influences on CO2 flux observed at EC stations were concentrated, demonstrating that grassland CO2 flux around the glaciers had little effect at the EC stations, (3) in the predominant wind direction, under stable daytime atmospheric stratification, the measurement of CO2 flux, as interpreted by the Agroscope Reckenholz Tanikon footprint tool, was 79.09% ± 1.84% in the contribution area. This was slightly more than seen at night, but significantly lower than the average under unstable atmospheric stratification across the three periods of interest (89%). The average distance of the farthest point of the flux footprint under steady state atmospheric conditions was 202.61?±?69.33 m, markedly greater than that under non-steady state conditions (68.55?±?10.34 m). This also indicates that the CO2 flux observed using EC was affected primarily by hydrochemical erosion reactions in the glacier area, (4) a good negative correlation was found between net glacier exchange (NGE) of CO2 and air temperature on precipitation-free days. Strong ice and snow ablation could promote hydrochemical reactions of soluble substances in the debris area and accelerated sinking of atmospheric CO2. Precipitation events might reduce snow and ice melting, driven by reduced regional temperatures. However, a connection between NGE and precipitation, when less than 8.8 mm per day, was not obvious. When precipitation was greater than 8.8 mm per day, NGE decreased with increasing precipitation, (5) graphically, the slope of NGE, related to daily runoff, followed a trend: snow melting period?>?snow accumulation period?>?early glacial ablation period?>?late glacier ablation period?>?dramatic glacier ablation period. The slope was relatively large during snow melting, likely because of CO2 sinking caused by water–rock interactions. The chemical reaction during elution in the snow layer might also promote atmospheric CO2 drawdown. At the same time, the damping effect of snow cover and the almost-closed glacier hydrographic channel inhibited the formation of regional runoff, possibly providing sufficient time for the chemical reaction, thus promoting further CO2 drawdown.  相似文献   

6.
Precipitation accumulating on the Greenland and Antarctic ice sheets records several key parameters (temperature, accumulation, composition of atmospheric gases and aerosols) of primary interest for documenting the past global environment over recent climatic cycles and the chemistry of the preindustrial atmosphere. Several deep ice cores from Antarctica and Greenland have been studied over the last fifteen years. In both hemispheres, temperature records (based on stable isotope measurements in water) show the succession of glacial and interglacial periods. However, detailed features of the climatic stages are not identical in Antarctica and in Greenland. A tight link between global climate and greenhouse gas concentrations was discovered, CO2 and CH4 concentrations being lower in glacial conditions by about 80 and 0.3 ppmv, respectively, with respect to their pre-industrial levels of 280 and 0.65 ppmv. Coldest stages are also characterized by higher sea-salt and crustal aerosol concentrations. In Greenland, contrary to Antarctica, ice-age ice is alkaline. Gas-derived aerosol (in particular, sulfate) concentrations are generally higher for glacial periods, but not similar in both the hemispheres. Marine and continental biomass-related species are significant in Antarctica and Greenland ice, respectively. Finally, the growing impact of anthropogenic activities on the atmospheric composition is well recorded in both polar regions for long-lived compounds (in particular greenhouse gases), but mostly in Greenland for short-lived pollutants.  相似文献   

7.
Coastal wetlands are hotspots for biodiversity and biological productivity, yet the hydrology and carbon cycling within these systems remains poorly understood due to their complex nature. By using a novel spatiotemporal approach, this study quantified groundwater discharge and the related inputs of acidity and CO2 along a continuum of a modified coastal acid sulphate soil (CASS) wetland, a coastal lake and an estuary under highly contrasting hydrological conditions. To increase the resolution of spatiotemporal data and advance upon previous methodologies, we relied on automated observations from four simultaneous time-series stations to develop multiple radon mass balance models to estimate groundwater discharge and related groundwater inputs of acidity and dissolved inorganic carbon (DIC), along with surface water to atmosphere CO2 fluxes. Spatial surveys indicated distinct acid hotspots with minimum surface water pH of 2.91 (dry conditions) and 2.67 (flood conditions) near a non-remediated (drained) CASS area. Under flood conditions, groundwater discharge accounted for ~14.5 % of surface water entering the lake. During the same period, acid discharge from the acid sulphate soil section of the continuum produced ~4.8 kg H2SO4?ha?1 day?1, a rate much higher than previous studies in similar systems. During baseflow conditions, the low pH water was rapidly buffered within the estuarine lake, with the pH increasing from 4.22 to 6.07 over a distance of ~250 m. The CO2 evasion rates within the CASS were extremely high, averaging 2163?±?125 mmol m?2 day?1 in the dry period and 4061?±?259 mmol m?2 day?1 under flood conditions. Groundwater input of DIC could only account for 0.4 % of this evasion in the dry conditions and ~5 % during the flood conditions. We demonstrated that by utilising a spatiotemporal (multiple time-series stations) approach, the study was able to isolate distinct zones of differing hydrology and biogeochemistry, whilst providing more reasonable groundwater acid input estimates and air–water CO2 flux estimates than some traditional sampling designs. This study highlights the notion that modified CASS wetlands can release large amounts of CO2 to the atmosphere because of high groundwater acid inputs and extremely low surface water pH.  相似文献   

8.
《Quaternary Science Reviews》2004,23(14-15):1681-1698
The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean currents.  相似文献   

9.
The Late Quaternary glaciation of Tibet has received considerable attention in the last few decades due to its influence on the regional climate, especially the Asian summer monsoon. Recently, however, it has been argued that the Tibetan ice sheet also might have played an important role in initiating global-scale palaeoclimatic changes. Controversy, however, exists on the nature of Late Quaternary ice cover over Tibet due largely to the subjectivity in the interpretation of the sparse and complex geomorphological evidence. We have examined this problem in the light of δ 18O data (a temperature proxy) of ice cores-from the Dunde ice cap on the northern flank of Tibet. Considering only the gross features in the Dunde ice-core isotopic data, we have interpreted a temperature decrease of 4°–6°C and consequent lowering of equilibrium line altitude (ELA) in the range 700–850 m during the last glacial stage (LGS). This could have caused depression of the snow line below the mean altitutde of the Tibetan plateau, resulting in an areally extensive but marginally thick ice cover. However, if one also considers the possibility that precipitation on the Tibetan plateau during LGS may have been significantly lower than at present, the ELA depression would be much less than that estimated by considering the temperature effect alone.  相似文献   

10.
In northwestern Canada, iron-formation occurs as part of the Rapitan Group, a dominantly sedimentary succession of probable Late Precambrian age. The Rapitan Group contains abundant evidence of glaciogenic deposition. It includes massive mixtites which contain numerous faceted and striated clasts. Finely bedded and laminated sedimentary rocks of the Lower Rapitan contain many large isolated (ice-rafted?) intra- and extra-basinal clasts. The Lower and Middle Rapitan are interpreted as products of a glacial marine regime. The iron-formation is interbedded with thin mixtite beds and contains large exotic clasts which are probably indicative of the existence of floating ice at the time of deposition of at least part of the iron-formation. If the apparently low paleolatitudes are confirmed, then glacial marine interpretation of the Rapitan, and the probably correlative Toby Conglomerate of southern British Columbia, support the postulate of a very extensive Late Precambrian ice sheet in North America.Similar iron-formations of similar age are present in South America (Jacadigo Series), in South-West Africa (Damara Supergroup) and in South Australia (Yudnamutana Sub-Group). All of these iron-formations are associated with glaciogenic rocks. In addition to the iron-formations, dolostones, limestones and evaporites (?) are intimately associated with Late Precambrian mixtites, considered by many to be glaciogenic.Huronian (Early Proterozoic) and correlative sequences of North America, and rocks of similar age in South Africa also contain closely juxtaposed undoubted glaciogenic rocks, iron-formations, dolostones and aluminous quartzites. The dolostones and aluminous sedimentary rocks have been interpreted as having formed under warm climatic conditions, but might also be explained by invoking higher PCO2 levels in the Early Proterozoic atmosphere. By analogy with the Huronian succession, preservation of “warm climate” indicators in mixtite-bearing Late Precambrian sequences does not preclude a glacial origin for the mixtites.  相似文献   

11.
The transition from the last glacial and beginning of Bølling–Allerød and Pre‐Boreal periods in particular is marked by rapid increases in atmospheric methane (CH4) concentrations. The CH4 concentrations reached during these intervals, ~650–750 ppb, is twice that at the last glacial maximum and is not exceeded until the onset of industrialization at the end of the Holocene. Periods of rapid sea‐level rise as the Last Glacial Maximum ice sheets retreated and associated with ‘melt‐water pulses’ appear to coincide with the onset of elevated concentrations of CH4, suggestive of a potential causative link. Here we identify and outline a mechanism involving the flooding of the continental shelves that were exposed and vegetated during the glacial sea‐level low stand and that can help account for some of these observations. Specifically, we hypothesize that waterlogging (and later, flooding) of large tracts of forest and savanna in the Tropics and Subtropics during the deglacial transition and early Holocene would have resulted in rapid anaerobic decomposition of standing biomass and emission of methane to the atmosphere. This novel mechanism, akin to the consequences of filling new hydroelectric reservoirs, provides a mechanistic explanation for the apparent synchronicity between rate of sea‐level rise and occurrence of elevated concentrations of ice core CH4. However, shelf flooding and the creation of transient wetlands are unlikely to explain more than ~60 ppb of the increase in atmospheric CH4 during the deglacial transition, requiring additional mechanisms to explain the bulk of the glacial to interglacial increase. Similarly, this mechanism has the potential also to play some role in the rapid changes in atmospheric methane associated with the Dansgaard–Oeschger cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Climate: Is the past the key to the future?   总被引:2,自引:0,他引:2  
 The climate of the Holocene is not well suited to be the baseline for the climate of the planet. It is an interglacial, a state typical of only 10% of the past few million years. It is a time of relative sea-level stability after a rapid 130-m rise from the lowstand during the last glacial maximum. Physical geologic processes are operating at unusual rates and much of the geochemical system is not in a steady state. During most of the Phanerozoic there have been no continental ice sheets on the earth, and the planet’s meridional temperature gradient has been much less than it is presently. Major factors influencing climate are insolation, greenhouse gases, paleogeography, and vegetation; the first two are discussed in this paper. Changes in the earth’s orbital parameters affect the amount of radiation received from the sun at different latitudes over the course of the year. During the last climate cycle, the waxing and waning of the northern hemisphere continental ice sheets closely followed the changes in summer insolation at the latitude of the northern hemisphere polar circle. The overall intensity of insolation in the northern hemisphere is governed by the precession of the earth’s axis of rotation, and the precession and ellipticity of the earth’s orbit. At the polar circle a meridional minimum of summer insolation becomes alternately more and less pronounced as the obliquity of the earth’s axis of rotation changes. Feedback processes amplify the insolation signal. Greenhouse gases (H2O, CO2, CH4, CFCs) modulate the insolation-driven climate. The atmospheric content of CO2 during the last glacial maximum was approximately 30% less than during the present interglacial. A variety of possible causes for this change have been postulated. The present burning of fossil fuels, deforestation, and cement manufacture since the beginning of the industrial revolution have added CO2 to the atmosphere when its content due to glacial-interglacial variation was already at a maximum. Anthropogenic activity has increased the CO2 content of the atmosphere to 130% of its previous Holocene level, probably higher than at any time during the past few million years. During the Late Cretaceous the atmospheric CO2 content was probably about four times that of the present, the level to which it may rise at the end of the next century. The results of a Campanian (80 Ma) climate simulation suggest that the positive feedback between CO2 and another important greenhouse gas, H2O, raised the earth’s temperature to a level where latent heat transport became much more significant than it is presently, and operated efficiently at all latitudes. Atmospheric high- and low-pressure systems were as much the result of variations in the vapor content of the air as of temperature differences. In our present state of knowledge, future climate change is unpredictable because by adding CO2 to the atmosphere we are forcing the climate toward a “greenhouse” mode when it is accustomed to moving between the glacial–interglacial “icehouse” states that reflect the waxing and waning of ice sheets. At the same time we are replacing freely transpiring C3 plants with water-conserving C4 plants, producing a global vegetation complex that has no past analog. The past climates of the earth cannot be used as a direct guide to what may occur in the future. To understand what may happen in the future we must learn about the first principles of physics and chemistry related to the earth’s system. The fundamental mechanisms of the climate system are best explored in simulations of the earth’s ancient extreme climates. Received: 7 November 1996/Accepted: 23 January 1997  相似文献   

13.
Benthic carbon isotope data indicate that the rate of North Atlantic Deep Water (NADW) formation and the mode of oceanic thermohaline circulation (THC) varied considerably across the transition from the Last Glacial Maximum (LGM) to the Heinrich 1 meltwater event (MWE) and, subsequently, to the Bølling warm period. We simulate changes in the Ocean-atmosphere carbon cycle induced by and linked to these oceanic fluctuations by means of a carbon cycle box model which resolves the major oceanic basins. The output from an ocean general circulation model (OGCM), which is forced by observed or reconstructed boundary conditions at its surface, serves to constrain the physical parameters of the carbon cycle model. The OGCM depicts three modes of Atlantic THC: an interglacial mode with vigorous NADW formation; a glacial mode with active, although weaker (-65%) NADW formation; and an MWE mode characterized by the complete lack of NADW formation. The carbon cycle model is forced from the LGM scenario into the MWE and finally into the Bølling interstadial. The glacial circulation mode accounts for approximately half (i.e., 37Dž µatm, depending on parameterization of biological productivity) of the observed glacial reduction in atmospheric CO2 partial pressure (pCO2). Approximately 70% of this pCO2 decline is linked to changes in sea-surface temperature and salinity. The MWE circulation mode has only a small effect on atmospheric pCO2 (ǃ µatm) but goes along with a massive redistribution of carbon from the Indo-Pacific and Southern oceans to the Atlantic Ocean, which stores 85NJ Gt (gigatons) excess carbon during the MWE. The onset of NADW formation after a meltwater event, has the potential to release 81Lj Gt carbon from the model ocean to the atmosphere, corresponding to an atmospheric pCO2 increase by 38Dž µatm, equivalent to approximately half of the modern, man-made pCO2 load.  相似文献   

14.
Carbon dioxide records from polar ice cores and marine ocean sediments indicate that the last glacial maximum (LGM) atmosphere CO2 content was 80–90 ppm lower than the mid-Holocene. This represents a transfer of over 160 GtC into the atmosphere since the LGM. Palaeovegetation studies suggest that up to 1350 GtC was transferred from the oceans to the terrestrial biosphere at the end of the last glacial. Evidence from carbon isotopes in deep sea sediments, however, indicates a smaller shift of between 400 and 700 GtC. To understand the functioning of the carbon cycle this apparent discrepancy needs to be resolved. Thus, older data have been reassessed, new data provided and the potential errors of both methods estimated. New estimates of the expansion of terrestrial biomass between the LGM and mid-Holocene are 700 GtC ± > 300 GtC, using the ocean carbon isotope-based method, compared with of 1100 GtC ± > 500 GtC using the palaeovegetation estimate. If these estimates of the carbon shift to the terrestrial biosphere are equilibrated with the dissolved carbon in the oceans, and the CaCO3 compensation of the ocean is taken into account, then the glacial atmospheric CO2 would have been between 50 (± 30) ppm and 95 (± 50) ppm higher. The glacial atmosphere therefore should have had a CO2 partial pressure of between 330 and 375 μatm. Hence, a rise of between 130 and 175 μatm in atmospheric CO2, rather than 80 μatm, at the end of the last glacial must be accounted for.  相似文献   

15.
Carbon dioxide (CO2) emission from the river-type reservoir is an hotspot of carbon cycle within inland waters. However, related studies on the different types of reservoirs are still inadequate. Therefore, we sampled the Three Gorges Reservoir (TGR), a typical river-type reservoir having both river and lake characteristics, using an online system (HydroCTM/CO2) and YSI-6600v2 meter to determine the partial pressure of carbon dioxide (pCO2) and physical chemical parameters in 2013. The results showed that the CO2 flux from the mainstream ranged from 26.1 to 92.2 mg CO2/m2 h with average CO2 fluxes of 50.0 mg/m2 h. The CO2 fluxes from the tributary ranged from ?10.91 to 53.95 mg CO2/m2 h with area-weighted average CO2 fluxes of 11.4 mg/m2 h. The main stream emits CO2 to the atmosphere the whole year; however, the surface water of the tributary can sometimes act as a sink of CO2 for the atmosphere. As the operation of the TGR, the tributary became more favorable to photosynthetic uptake of CO2 especially in summer. The total CO2 flux was estimated to be 0.34 and 0.03 Tg CO2/year from the mainstream and the tributaries, respectively. Our emission rates are lower than previous estimates, but they are in agreement with the average CO2 flux from temperate reservoirs estimated by Barros et al. (Nat Geosci 4(9):593–596, 2011).  相似文献   

16.
Repeated surveys of the Kennebec estuary, a macrotidal river estuary in Maine, USA, between 2004 and 2008 found spatial and temporal variability both in sources of carbon dioxide (CO2) to the estuary and the air–sea flux of estuary CO2. On an annual basis, the surveyed area of the Kennebec estuary had an area-weighted average partial pressure of CO2 (pCO2) of 559 μatm. The area-weighted average CO2 flux to the atmosphere was 3.54 mol C m?2 year?1. Overall, the Kennebec estuary was an annual source of 7.2?×?107 mol CO2 to the atmosphere. Distinct seasonality in estuarine pCO2 was observed, with shifts in the seasonal pattern evident between lower and higher salinities. Fluxes of CO2 from the estuary were elevated following two summertime storms, and inputs of riverine CO2 outweighed internal estuarine CO2 inputs in nearly all months. River and estuarine inputs of CO2 represented 68 and 32 % of the total CO2 contributions to the estuary, respectively. This study examines the variability of CO2 in a large New England estuary, and highlights the comparatively high contribution of CO2 from riverine sources.  相似文献   

17.
At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics and the Southern Hemisphere. Responses in austral regions are also influenced by a fast response to summer insolation forcing at high southern latitudes.At the 22,000-year precession period, northern summer insolation again forces a lagged ice-sheet response, but with muted transfers to proximal regions and no subsequent effect on atmospheric CO2. Most 22,000-year greenhouse-gas responses have the ‘early’ phase of July insolation. July forcing of monsoonal and boreal wetlands explains the early CH4 response. The slightly later 22-K CO2 response originates in the southern hemisphere. The early 22-K CH4 and CO2 responses add to insolation forcing of the ice sheets.The dominant 100,000-year response of ice sheets is not externally forced, nor does it result from internal resonance. Internal forcing appears to play at most a minor role. The origin of this signal lies mainly in internal feedbacks (CO2 and ice albedo) that drive the gradual build-up of large ice sheets and then their rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession.  相似文献   

18.
Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤?8 wt% H2O). CO2 contents are generally low (<?650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (<?3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (<?140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (<?569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3?±?2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.  相似文献   

19.
Qatar economy has been growing rapidly during the last two decades during which waste generation and greenhouse gas emissions increased exponentially making them among the main environmental challenges facing the country. Production of biochar from municipal solid organic wastes (SOWs) for soil application may offer a sustainable waste management strategy while improving crop productivity and sequestering carbon. This study was conducted to (1) investigate the physicochemical parameters of biochars for SOW, (2) select the best-performing biochars for soil fertility, and (3) evaluate the potential benefits of these biochars in lowering greenhouse gases (GHGs) during soil incubation. Biochars were produced from SOW at pyrolysis temperatures of 300–750 °C and residence times of 2–6 h. Biochars were characterized before use in soil incubation to select the best-performing treatment and evaluation of potential GHG-lowering effect using CO2 emission as proxy. Here, soil–biochar mixtures (0–2%w/w) were incubated in greenhouse settings for 120 days at 10% soil moisture. Soil properties, such as pH, EC, TC, and WHC, were significantly improved after soil amendment with biochar. Two biochars produced from mixed materials at 300–500 °C for 2 h and used at 0.5–1% application rate performed the best in enhancing soil fertility parameters. A significant decrease in CO2 emission was observed in vials with soil–biochar mixtures, especially for biochars produced at 500 °C compared the corresponding raw materials which exhibited an exponential increase in the CO2 emission. Hence, application of biochar to agricultural soils could be beneficial for simultaneously improving soil fertility/crop productivity while sequestering carbon, thereby reducing anthropogenic emissions of GHGs.  相似文献   

20.
Anthropogenic activities often result in the emissions of methane (CH4) and carbon dioxide (CO2) which are the principal components of greenhouse gases. The mitigation of these gases to avert further occurrence of global warming has attracted a lot of research interest. In this study, the potential of greenhouse gases abatement via catalytic CO2 (dry) reforming of methane to syngas over samarium oxide-supported cobalt (20 wt% Co/80 wt% Sm2O3) catalyst was investigated. The 20 wt% Co/80 wt% Sm2O3 material was synthesized via wet impregnation method and characterized using different instrument techniques. The methane dry reforming reaction, as well as its kinetics over the catalyst, was studied in a stainless steel fixed-bed continuous flow reactor at feed (CH4:CO2) ratios range of 0.1–1.0, temperature range of 923–1023 K and gas hourly space velocity (GHSV) of 30,000 h?1. The 20 wt% Co/80 wt% Sm2O3 catalyst showed promising catalytic activity evident from the highest CH4 and CO2 conversion of ~71 and ~74% as well as the highest hydrogen (H2) and carbon monoxide (CO) yield of ~62 and ~73%, respectively. Moreover, the methane dry reforming over the 20 wt% Co/80 wt% Sm2O3 catalyst produces H2/CO ratio close to unity hence suitable for use as a chemical intermediate for synthesis of oxygenated fuels. The kinetic data obtained from the methane dry reforming were fitted to power law model. Apparent activation energies of 88.62, 80.12, 108.12 and 100.91 kJ mol?1 were obtained for CH4, CO2, H2 and CO, respectively. The characterization of the spent 20 wt% Co/80 wt% Sm2O3 catalyst after 4 h of time-on-stream has confirmed the presence of amorphous carbon which can easily be gasified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号