首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究成都地区城市化对当地气候的影响,利用不同时期的下垫面土地利用类型数据和耦合单层城市冠层模型(UCM)的WRF(Weather Research and Forecasting)模式对成都夏季和冬季城市化效应进行了模拟研究,得到以下主要结论:1)成都地区城市化使夏季城区上空出现增温区域。城区地表气温升高约2.8°C,边界层高度升高约150 m,冬季地表气温平均升高约0.6°C,边界层高度升高约25 m。夏冬两季气温日较差均减小。2)受城市化影响,成都地区夏季和冬季2 m相对湿度减小,感热通量增加,潜热通量减小,且夏季变化程度强于冬季。3)城市化使地表的粗糙度增加,进而使夏季和冬季风速在城区减小,减小约0.1~0.6 m s?1,但夏季风速减小区域较冬季更大。城市化还使城市上空低层散度减小,辐合作用增强,垂直速度增大,夏季水汽往高层输送明显。4)夏季,城市化作用使日平均和白天时段降水量在城区的迎风区和下风区均增加,夜间降水量在下风区域增加,对迎风区域影响不明显。  相似文献   

2.
太阳活动异常与降水和地面气温的关系   总被引:14,自引:0,他引:14  
段长春  孙绩华 《气象科技》2006,34(4):381-386
利用1951~2000年太阳10.7 cm射电流量、全国160站观测到的降水和气温距平资料,分析了太阳活动异常对中国夏季、冬季降水和气温的影响。结果表明:太阳活动强的年份,夏季南方、东北少雨,黄河中上游流域、黄淮地区以及长江中上游则多雨;冬季全国均多雨。北方(尤其是东北和新疆)冬季气温偏高,夏季气温偏低。太阳活动弱的年份,夏季华南及黄河以北多雨,而长江流域及以北到黄河中上游夏季则少雨;冬季全国均少雨,北方冬季气温偏低。进一步讨论了中国东北地区夏季降水与太阳活动的密切关系。  相似文献   

3.
本文利用2010—2019年滇中石林县的全球再分析资料,通过HYSPLIT模型的后向轨迹对不同季节和不同高度的水汽来源进行追踪和分析。结果表明:石林县四季的水汽源地和水汽运移路径存在差异。春季水汽主要来源于受高空西风影响的欧亚大陆和非洲北部,夏季水汽主要来源于孟加拉湾,南海和西太平洋海域,秋季水汽主要来源于孟加拉湾—南海和西太平洋,冬季主要来源于欧亚大陆和非洲北部的高空西风、孟加拉湾海域。石林县的水汽通道有阿拉伯海和孟加拉湾—南海、西太平洋、欧亚非大陆、局地五条水汽通道,且春夏秋冬四季的不同高度层的水汽输送通道和水汽贡献率存在较大差异。  相似文献   

4.
Considered are the effects of suspended matter content and water mass dynamics on the formation of optical structure of water in the upper layer of the deep part of the Black Sea using the data of long-term simultaneous observations. It is demonstrated that the peculiarities of horizontal distribution of the depth of transparent and turbid optical layers depend on the distribution of hydrological parameters characterizing the dynamic processes in the upper layer of the sea. Computed and analyzed are the parameters of regression relationship between the beam attenuation coefficient and the concentration of organic and total suspension and chlorophyll-a as well as between the depth of transparent layer and the position of the lower boundary of cold intermediate layer in different dynamic formations in spring, summer, and autumn.  相似文献   

5.
秦剑  赵刚  綦正信  朱保林  陈艳  刘瑜 《气象》2013,39(6):749-758
利用2008年在金沙江下游溪洛渡水电站坝区及向家坝水电站库区获得GPS低空探空资料以及同步地面观测资料,统计分析了坝区从地面开始到大气边界层2000 m高度四季不同高度的风场变化特征.结果表明:(1)春季溪洛渡坝区大气边界层以偏西风为主导风向,1500m高度层以下静风和小风出现频率大,是四个季节中地面静风、小风出现频率的最大值;(2)夏季地面静风、小风出现频率为四个季节中最小,夏季大气边界层中低层主要盛行西风和西北偏西风;(3)秋季溪洛渡坝区大气边界层中低层主要盛行偏西风,到高层则逐渐转变为偏北风;(4)冬季溪洛渡坝区大气边界层低空盛行以西风和西北偏西风为主导的偏西风;中高层主要风向是西风、西南偏西风、东风和东北偏东风;(5)溪洛渡坝区秋、冬季大气边界层西风、东北偏北风、东北偏东风风速最大值均出现在2000m高度层.  相似文献   

6.
冬季积雪的异常分布型及其与冬、夏大气环流的耦合关系   总被引:4,自引:0,他引:4  
采用 ECMWF1 979~ 1 993年 2 .5°× 2 .5°的网格点积雪深度资料 ,研究了较为细致的积雪异常的空间分布特征 ,揭示了欧亚大陆冬季积雪的异常空间分布型 ;并采用 SVD方法研究了冬季积雪的异常分布型与冬、夏大气环流的耦合关系。结果表明 :欧亚大陆冬季积雪深度存在典型的异常空间分布型 ;积雪的异常分布型与冬、夏大气环流之间均存在一定的耦合关系。冬季积雪的异常分布型与大气 EU遥相关型存在明显的同时性相互作用 ,大气 EU遥相关型有利于冬季积雪异常分布型的出现和维持 ,而积雪异常分布型对大气 EU遥相关型的发生起一定的作用 ,进而对冬季风活动产生影响。冬季积雪的这种异常分布型与夏季大气环流 ,尤其是东亚地区的夏季大气环流 ,也存在一定的联系。积雪异常分布型可以通过影响副热带高压的南北进退 ,对东亚季风及中国夏季雨带产生影响。  相似文献   

7.
利用美国NCEP/NCAR风场再分析资料和云南高空、地面、高山风塔实测风资料,对云南地区的大气风场特征进行了分析。结果表明,云南对流层中低层大气风场常年盛行偏西气流,风向稳定,尤以西南风最多,冬-春-夏-秋四季风场变化特征明显。腾冲、思茅高空盛行风向以西风为主。云南除滇东北、滇东南和局地地形影响外,大部分地区近地面全年以盛行西南风为主。山区全年盛行风向以西南风为主。云南近地面年平均风速1.9m/s,北部大于南部,东部大于西部,冬春季风大,夏秋季风小,风速日变化特征显著。昆明地区大气边界层存在逆温现象,冬季突出,夏季微弱,秋冬春季频率高,夏季频率低。云南空气污染具有干湿季分布特点,1-5月为主要污染时段,冬春季节存在西南和东北两条污染传输通道。  相似文献   

8.
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years.It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cover over QXP not only in the interannual variation but also in the decadal variation. A clear relationship exists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four climate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP.  相似文献   

9.
Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951–1994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia.  相似文献   

10.
应用2000~2011年NCEP/NCAR再分析逐日6h 1 1资料,分析了新疆天山山区对流层不同层次空中水汽输送特征,结果表明:(1)天山山区地面~100 hPa每年平均有11504.1×108t水汽输入,11337.0×108t水汽输出,水汽净收支为167.1×108t,其中西、北边界为输入,东、南边界为输出,对流层中层水汽输送量最大,低层次之,高层最小。天山山区水汽总输入量占全新疆水汽输入量的44.1%。(2)各季节中夏季水汽输送量最大,春季、秋季相当,冬季最小,西边界、北边界均为水汽输入边界,东边界、南边界均为水汽输出边界,对流层中层水汽输入量最大。  相似文献   

11.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

12.
北京地区日最大边界层高度的气候统计特征   总被引:1,自引:0,他引:1  
使用北京气象站探空观测数据和地面气温观测数据,以干绝热曲线法估算1984~2013年逐日最大边界层高度,同时计算对应的边界层平均风速和通风量。统计分析这3个边界层参量的平均特征,并利用2001~2012年的空气污染指数(API),探讨大气污染与边界层参量的关系。结果表明:(1)日最大边界层高度的30年月均值以春季和夏初(3~6月)最高,约1600 m;夏季和秋初(7~10月)次之,约1300 m;冬季(11月、12月和1月)最低,约1000~1200 m。(2)夏季,日最大边界层高度不同数值的频率大致为对称分布,峰值处于1000~1600 m范围;秋、冬季,频率分布系统性地向低值一方偏斜,600~800 m的出现频率大大增加;春季边界层高度的变化极大。(3)各季边界层平均风速以夏季为最小。(4)一年中春季通风量最大,秋季次之,冬季较低,夏季最小。(5)秋、冬季,北京中度和重污染个例(API200)集中分布于弱风、低边界层和小通风量条件,反映污染物局地累积的作用;春季污染个例半数以上以高风速、高通风量为特征,反映沙尘类外部输入性污染的作用。  相似文献   

13.
夏季金塔边界层风、温度和湿度结构特征的初步分析   总被引:10,自引:3,他引:7  
利用2004年6~7月在河西走廊金塔陆-气相互作用试验的观测资料,分析了该地区夏季夜间和中午风、温、湿的垂直结构特征,结果表明:夏季夜间,当地面风较小时,金塔绿洲高空可能为偏西风气流,夜间稳定层高度大致在100~190m。夏季中午,当低空为偏东风时,风速随高度的变化比较复杂。总的来说,存在着东风急流,急流高度在1000-4000m之间,大气边界层顶盖(即逆温层底)约在3000-3600m高度,在500-800m高度以下存在绿洲内边界层;当低空为偏北风或西北风时,高空都为偏西风或西北风气流,低空风速随高度的变化比较平缓,风速有时存在极大值,大气边界层顶盖(即逆温层底)在3500m左右,在1200m以下可能存在绿洲内边界层,绿洲内边界层高度有时会很低。  相似文献   

14.
利用乌鲁木齐市2011~2012年08时、20时L波段(1型)雷达探测的高空资料建立了乌鲁木齐大气边界层气象要素数据库,分析了乌鲁木齐边界层内气温、风向、风速和相对湿度的垂直分布及其时间变化特征。结果表明:边界层内温度廓线的日变化和季节变化比较显著,各月均有逆温出现,且08时较20时更易出现逆温,冬季08时逆温层厚度较厚且强度最大。边界层内夏、冬两季风速随高度变化波动较大,春、秋两季变化较小。近地层春、夏、秋三季08时盛行西南偏南风,冬季盛行偏东风和西南风;20时春季盛行东北风,夏秋盛行偏北风和西北风,冬季则盛行东风和东北偏东风。08时、20时风向均随高度的增加呈明显的向右偏转趋势,且日风向的变化具有明显的“山谷风”特点。08、20时的相对湿度冬季最大,夏季最小,且随高度增加,春、夏两季08、20时相对湿度的变化较大。  相似文献   

15.
邢如楠 《气象学报》1986,44(1):10-17
为研究大尺度海气相互作用、气候以及气候的变化,一个具有规则海岸线和无海底地形的三层斜压海洋模式已经建立起来。积分区域包括了赤道地区在内,南北方向从-2750 km到+4750 km,东西方向宽10000 km,总深度是4 km。模式方程为原始方程,用了静力近似和Bou-sinesq近似。模式数值积分分两个阶段,在第一个阶段,海洋环流从静止状态开始,以只随纬度变化的年平均风应力和海表热通量作为强迫边条件数值积分十年,这时海洋上层的环流和温度都趋于平稳,我们将第十年末的积分状态作为模式气候的准平衡态。计算结果模拟了热带太平洋上气候平均的温度分布以及主要海流的大尺度特征,如赤道地区的狭长冷水带和强上翻区、南赤道洋流、北赤道逆流以及表层下面沿赤道自西向东的潜流。在第二个阶段,以在第一个阶段末尾得到的准平衡态作为初值,分别用冬季和夏季的风应力作为强迫边条件再积分一年。比较这两种计算结果,我们看到海洋环流随信风系统的季节变化也呈现出明显的季节变化,特别是北赤道逆流,其强度在夏季强,在冬季弱甚至不出现。南赤道洋流无论哪个季节都穿过赤道,在赤道以北的南赤道洋流冬季比夏季强,而在赤道以南的南赤道洋流夏季比冬季强。  相似文献   

16.
利用2013年3月至2017年2月天津西青地基35通道微波辐射计观测资料,分析天津地区大气水汽和液态水特征。结果表明:天津地区各季节积分水汽和积分液态水的日变化趋势基本一致,均呈单峰型日变化特征,其中夏季最大,秋季次之,冬季最小。各季节积分水汽最大值出现在23:00时(北京时,下同)的概率均明显大于其他时次,夏季和冬季的积分液态水的最大值出现在14时的概率最大,春季和秋季分别出现在10时和13时的概率最大。天津地区水汽密度由地面至3.5 km处逐渐减小,递减梯度由夏季、秋季、春季和冬季的顺序依次增大,各季节从1.5 km往上日变化均不明显。1 km以下,春季、夏季和秋季平均水汽密度的日变化曲线呈双峰型,主峰值分别出现在08时、11时和12时左右。冬季呈单峰型变化,峰值区出现在12-16时。液态水密度随高度分层变化,夏季的液态水密度大值区(0.08-0.14 g·m-3)为5-6 km,在18-20时出现最大值。秋季、春季和冬季液态水密度的大值区出现的高度为1.5-3.5 km,但数值依次减小,春季和冬季的最大值出现在05时前后,秋季则出现在02时左右。另外天津地区水汽、液态水与温度和降水量的变化趋势基本一致,除夏季06-18时及冬季部分时次外,水汽与温度呈正相关。液态水与温度相关性较差,但与降水量呈正相关,全年液态水与降水量夜间的相关性大于白天。  相似文献   

17.
王文波  杨明  王旭  梁倩  封雅琼 《气象科技》2014,42(3):466-473
利用青藏高原中东部地区16个探空站的1979—2008年各标准等压面上的月平均探空资料对青藏高原中东部地区500~200hPa高层水汽冬夏季时空分布特征及变化趋势进行了研究,结果表明:①空间分布上,青藏高原的水汽空间分布冬夏两季呈现出一致明显的西北—东南走向,高原南部水汽年际变化波动较大,北部较稳定;夏冬两季水汽总体呈现一致变化,同时夏季还存在南北向的反相位区域异常变化,冬季则表现为东西向的反相位变化;②时间变化上,青藏高原夏季水汽总体呈现出较弱的上升趋势,1979—1995年水汽有下降趋势,1996—2005年转为增加趋势,突变主要在1997、2006年;冬季水汽总体为弱下降趋势,1979—1984年水汽为下降趋势,1985—2004年增长并保持稳定,突变主要在1986、2005年;同时青藏高原水汽还存在西部水汽增加而东部水汽呈减少趋势的区域变化特征。  相似文献   

18.
Based on the Princeton Ocean Model (POM), the seasonal thermohaline feature and the ocean circulation in the Gulf of Thailand (GOT), situated between 6°N to 14°N latitude and 99°E to 105°E longitude, were studied numerically with 37 × 97 orthogonal curvilinear grid and 10 vertical sigma levels conforming to a realistic bottom topography. A spin-up phase of the first model run was executed using wind stress calculated from climatological monthly mean wind, restoring-type surface heat and salt, and climatological monthly mean fresh water flux data. In this paper, the temperature and salinity fields taken from Levitus94 data sets and the calculated temperature and salinity from the model run for 12-month mean and for each season are presented where the winter, summer, rainy, and end of the rainy seasons of Thailand are represented by the months January, April, July, and October, respectively. The simulated circulations are also described. The results show that the temperature in the GoT is warmer than the temperature of the other parts connected to the South China Sea (SCS). At any depth of inflow from SCS into the GoT, the salinity is high, but in the outflow from the GoT at the surface, the salinity is low. The strong circulations are clockwise during summer and the rainy seasons of Thailand, which are the East Asian monsoon periods, northeasterly and southwesterly during summer. They occur near Pattani and Narathiwat provinces during summer and in the central GoT during the rainy seasons. Sensitivity experiments were designed to investigate the effects of wind forcing and open boundary conditions. Wind forcing is shown to be the important factor for generating the circulation in the GoT. The lateral velocity at the open boundaries is of considerable importance to current circulation for the rainy and end of the rainy seasons, with insignificant effect for the winter and summer seasons of Thailand.  相似文献   

19.
敦煌地区大气气溶胶光学厚度的季节变化   总被引:5,自引:10,他引:5  
李韧  季国良 《高原气象》2003,22(1):84-87
讨论了利用太阳直接辐射资料反演大气气溶胶光学厚度的一种方法,并且用1981-1983年敦煌地区太阳直接辐射资料计算了该地区大气气溶胶光学厚度的季节变化特征,结果表明:敦煌地区大气气溶胶光学厚度冬季稳定,变化小,春季不稳定,变化幅度大,夏季次之;秋季较小。  相似文献   

20.
用NCEP/NCAR月平均再分析资料对南亚高压和对流层上层西风急流的季节变化及盛夏两类型态进行对比。结果表明,南亚高压和西风急流中心都有从冬到夏的西移北进和从夏到冬的东退南撤,急流中心位于南亚高压中心北侧。东亚夏季风盛行期间南亚高压中心的北移提前于西风急流中心的北移,二者的强度呈反相的季节变化。一般情况下,伊朗高压对应西部急流型,青藏高压对应东部急流型。典型东、西部急流年份中高纬气温及高度场的差异表明气压梯度力强弱对比是急流东西型变化的主要原因,南亚高压的位置基本上决定了急流中心的型态,但由于南亚高压具有"趋热性",而急流的移动符合热成风的规律,因而二者的热力影响机制有所不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号