首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An integrated study was carried out to investigate the subsurface geological conditions in a hard rock environment, with the aim of identifying zones with groundwater resource potential. The study, in Bairasagara watershed, Karnataka, India, considered geomorphology, water level, resistivity imaging, self potential, total magnetic field and susceptibility. The signatures due to lineaments have been clearly identified and their role in groundwater movement has been documented. Synthetic simulation methods were used to model the electrical response of the lineament using finite differential modeling scheme. The inverted image of the field data is compared with the synthetic image and iteration were performed on the initial model until a best match was obtained resulting on the generation of the calibrated resistivity image of the subsurface. Resistivity imaging revealed that the dykes are weathered/fractured to a depth of 6–8 m and are compact at deeper levels, and that they behave as barriers to groundwater movement, yet facilitate a good groundwater potential zone on the upgradient side. The results of magnetic surveys were utilized in differentiating granites and dolerite dykes with an insignificant resistivity contrast. Geomorphological expression alone cannot reveal the groundwater potential associated with a lineament. However, characterizing the nature of the feature at depth with integrated geophysical methods provides essential information for assessing that potential.An erratum to this article can be found at  相似文献   

2.
This research is an attempt to accomplish a 3-D resistivity imaging survey, which was carried out near a water well contaminated with hydrocarbon materials in Karbala governorate. Two-dimensional resistivity imaging measurements were collected along four parallel profiles, using a Wenner array with electrode spacing of 1 m. The RES3DINV program was used to invert the apparent resistivity data. The results displayed a resistivity distribution of the subsurface in a three-dimensional volume. Thus, both the horizontal and vertical extents of the contaminated zone were displayed. This technique revealed a low resistivity zone at depth ranges from 3 to 6 m in the investigation area, but the seepage starts at depth ranges between 2 and 3 m and continues down depth (may be to the groundwater level). This low resistivity zone is the most likely location for a subsurface seepage of contaminated water. It is clear that the sufficient measurement points along 2-D lines in a small area can increase the 3-D imaging resolution, and nearly real 3-D imaging can be achieved, when the size of subsurface anomaly compared with the electrode spacing (a) of the Wenner array is taken into consideration.  相似文献   

3.
Water is an essential natural resource without which life wouldn’t exist. The study aims to identify groundwater potential areas in Vepapanthattai taluk of Perambalur district, Tamil Nadu, India, using analytic hierarchy process (AHP) model. Remote sensing and magnetic parameters have been used to determine the evaluation indicators for groundwater occurrence under the ArcGIS environment. Groundwater occurrence is linked to structural porosity and permeability over the predominantly hard rock terrain, making magnetic data more relevant for locating groundwater potential zones in the research area. NE-SW and NW-SE trending magnetic breaks derived from reduction to pole map are found to be more significant for groundwater exploration. The lineaments rose diagram indicates the general trend of the fracture to be in the NE-SW direction. Assigned normalised criteria weights acquired using the AHP model was used to reclassify the thematic layers. As a result, the taluk’s low, moderate, and high potential zones cover 25.08%, 25.68% and 49.24% of the study area, respectively. The high potential zones exhibit characteristics favourable for groundwater infiltration and storage, with factors as gentle slope of <3°, high lineament densities, magnetic breaks, magnetic low zones as indicative of dykes and cracks, lithology as colluvial deposits and land surface with dense vegetation. The depth of the fracture zones was estimated using power spectrum and Euler Deconvolution method. The groundwater potential mapping results were validated using groundwater level data measured from the wells, which indicated that the groundwater potential zoning results are consistent with the data derived from the real world.  相似文献   

4.
We suggest a new inversion method for frequency induction data implying the use of a new parameter, which has a simple analytical form in the case of a uniform subsurface. The new parameter is found from induction numbers measured in the field of a vertical magnetic dipole or a vertical magnetic dipole combined either with a horizontal electrical dipole or with a horizontal magnetic dipole. Compared with the classical methods, the new technique provides better resolved resistivity curves and faithful images of the subsurface at higher frequencies and smaller transmitter-receiver separations. The inversion algorithm is applied to amplitude and amplitude-phase data and provides reliable depth assignment of the detected resistivity layers in the latter case.  相似文献   

5.
Twenty seven vertical electrical sounding (VES) profiles surrounding four known traverses were obtained in Ngor-Okpala local government area of Imo state to examine the subsurface geomaterials and the associated groundwater potential. The VES data, constrained by borehole data, provided useful information about the subsurface hydrogeologic and lithologic conditions. From the validated interpretation, the area assessed has loamy soil, medium grained sands, well-sorted medium-grained/gravelly sands and river sand as the lithologic succession from top to the bottom of the depth penetrated. The aquifers in the area were found in the medium-grained sands and well-sorted medium-coarse-grained sands. The aquifer depth for all-season groundwater that would be devoid of draw-down can be found at a depth range of 42–50 m. The resistivity maps of selected depths exhibit sharp resistivity changes at depth due mainly to undulating subsurface topography. A map of the distribution of the kσ-values shows that good quality groundwater can be found in most parts of the area.  相似文献   

6.
Geophysical and hydrogeological investigations have been carried out around Sawmills in Zimbabwe, Africa. The investigations are components of a larger investigation to assess the groundwater potential of the Karoo sedimentary basin with regards to supplying water to Bulawayo City. The Sawmills area was selected due to the availability of borehole logs indicating favourable stratigraphy for groundwater availability and due to the high yields from the aquifers measured from these boreholes. Data collected using two geophysical methods are presented here: transient electromagnetic (TEM) and continuous vertical electrical sounding (CVES) data. The data have also been processed using laterally constrained inversion (LCI). Because the CVES provides greater detail in the shallow subsurface, whereas TEM is more effective at depth, a more accurate image of the entire subsurface profile is provided based on using both methods. The results suggest that LCI of CVES and TEM data, in the subsurface at the required depths at Sawmills, is able to provide a substantially more accurate image of the subsurface than either method alone. The hydrogeological interpretation of the geophysical data is valuable for determining the depth to and thickness of the potential aquifer horizon(s) and for identifying the position of potential recharge zones.  相似文献   

7.
The purpose of this study was to identify the groundwater potential zones in Noyyal river basin using GIS and electrical resistivity. River Noyyal was perennial with good flow till early seventies. In recent years, the scene has changed drastically and the river has become practically seasonal and receives copious water during northeast monsoon from September to November. The rest of the years it remains more or less dry. Since the surface water resources in the area are inadequate to meet the local needs it is necessary to explore groundwater resources which has not been done properly. Hence various thematic maps have been used for the preparation of groundwater prospective map by integrating geology, geomorphology, slope, drainage and lineament of the study area. Electrical resistivity survey was conducted at 52 locations by using Schlumberger configuration. From this weathered thickness and depth to basement have been taken and overlaid for identifying groundwater potential sites and finally this result was compared with yield data. The interpretation shows that the entire study area has moderate to good category of groundwater potential.  相似文献   

8.
The Ground Penetrating Radar (GPR) is a newly developing geophysical tool for imaging the sub-surface and is potentially useful in groundwater exploration. We test its usefulness in characterizing a groundwater rich lineament near Gajularamaram in the Hyderabad granite terrain, where groundwater is limited to soil, weathering zone and lineaments. The lineament is 2 km long and 50–100 m wide, and oriented in WNW-ESE direction. It is characterized by many closely spaced sub-vertical fractures and faults, majority of which are parallel to the lineament. On either sides of the lineament, sub-horizontal sheet joints are abundant. The lineament is saturated with groundwater that discharge as springs at some places. About 450 m long, 400–100 MHz GPR data (~5–30 m depth) were acquired along five profiles across the lineament. In the lineament, soil thickness varies from ~0.5 m to 5 m, and is underlain by weathered granite. In the WNW part, a thick weathering zone (~15 m) is present and a 10 m wide vertical anomaly zone (lineament) is also present. The presence of shallow reflectors at 1 m depth in the lineament is attributed to the groundwater surface. The GPR images reveal many sub horizontal to gently dipping reflectors, which are interpreted to be the sheet joints. The GPR data clearly reveal the saturated lineament, from which groundwater may migrate laterally to long distance through the sheet joints. We demonstrate the GPR as a rapid geophysical tool that can be used successfully to explore the nearsurface groundwater.  相似文献   

9.
Geoelectrical resistivity investigation using Vertical Electrical Sounding (VES) technique was conducted at Port Blair, South Andaman Island, to locate the fractures in different formations and to decipher its groundwater potential. A total of 40 VES were carried out covering the entire study area using Schlumberger electrode configuration out of which 34 VES fall in Andaman Flysch formations and the remaining VES in Ophiolite formations. The interpreted resistivity results were integrated with nine borehole lithologs for the subsurface analysis. The combination of VES with borehole litholog data has provided a close correspondence on subsurface hydrogeological conditions. The interpreted VES data of various formations showed drastic variations in the resistivity ranging from higher in Ophiolite, moderate in Andaman Flysch and very low in valleys of Andaman Flysch formations. The study further revealed that the weathered and fractured volcanics of Ophiolite groups of rocks and sandstone that occur in the Andaman Flysch formations constitute the productive water bearing zones categorized as good groundwater potential zone. Based on the geoelectrical parameters, viz., thickness of layers and the layer resistivity values, a groundwater potential map was prepared, in which good, moderate, and poor groundwater zones were demarcated. Further, numerical, spatial and litho-geoelectric models of resistivity were analyzed in terms of groundwater potential and these models have thus enabled to prepare a comprehensive groundwater development and management plans proving its efficacy in this art of exploratory investigations.  相似文献   

10.
Knowledge of the existence of fracture zones, their extent, intensity and direction is very useful for assessing groundwater in hardrock regions and in this context geophysical methods are widely accepted as a powerful means of study. In the modern era of exploration, application of the Resistivity Imaging technique gives a new opportunity for groundwater study in hardrock regions. Exploration surveys were conducted at one of the important sites in Maheshwaram watershed, Andhra Pradesh, India with a multielectrode resistivity imaging system. To reduce the ambiguity of geophysical interpretation some complementary geophysical studies like ground Magnetic and VLF were also carried out.A number of 2D resistivity images were prepared in a grid pattern, which clearly show the weathered and fractured zones in different parts of the study area. With the help of all 2D profiles a quasi-3D image has been created, which indicates the orientation and extension of the fracture zone in a horizontal as well as vertical direction in the study area. Strong agreement exists among the anomalies identified using the ground magnetic, VLF and resistivity imaging methods. The litholog data available in the study area also helps to interpret geophysical results to find a potential groundwater bearing zone in that area.  相似文献   

11.
Water is a fluctuating resource making it difficult to measure in time and in space. To demonstrate the efficiency of the geographic information system (GIS) for groundwater studies, information on the parameters controlling groundwater such as lithology, geomorphology and lineament analysis were analyzed. LISS-III and Landsat satellite image of the area was used to infer information on the geologic lineaments and geomorphology. To delineate linear features enhancement and direction, filtering was performed on single bands of Landsat images. Thematic maps for geology, slope, geomorphology and lineament were prepared and integrated in GIS by assigning the weights and ranking to various parameters controlling the occurrence of groundwater to generate the groundwater potential map for the study area. The results indicate that the floodplain of river and its adjoining areas have very good groundwater potential, whereas the steeply sloping area in the northern part having high relief and slope possesses poor groundwater potential.  相似文献   

12.
Coal mine fire is a serious problem in Jharia coal field, India. The coal mine fire can be detected with different techniques such as borehole temperature measurement, thermo-compositional analysis, remote sensing techniques, thermo-graphic measurement and geophysical methods. In this study, various geophysical methods were used to detect the surface and subsurface coal mine fires. Geophysical techniques used in the present study are apparent resistivity, self-potential (SP), magnetic method and thermography. Geophysical anomalies such as low SP value of \(-60\hbox { mV}\), high negative magnetic response and low apparent resistivity value helped us to detect and delineate the fire and non-fire areas laterally as well as depthwise. Furthermore, the thermography survey was carried out in the coal field using thermal imaging camera in order to substantiate the geophysical methods. This integrated approach was found to be more advantageous for the detection and delineation of surface and subsurface fire with respect to use of any specific techniques. Moreover, the level of threat towards the locality, national railway line was also assessed unambiguously using the above techniques. Hence, proper planning and implementation towards the mitigation of hazard can be achieved on the basis of the reported results.  相似文献   

13.
Subsurface structures associated with hard rocks are very important for groundwater. Wadi Fatima runs through the volcanic and metamorphic rocks of the Arabian Shield which are characterized by higher magnetization than the overlaying alluvium sediments. Magnetic and direct current (DC) resistivity methods have been used for groundwater exploration in the northern part of Wadi Fatima. The magnetic survey was used mainly to map the subsurface structures, using analytic signal algorithm, of the study area. The DC resistivity method was applied to describe the lithologic domain as a function of depth, depending on their electrical property contrasts where it provided a good indication for water bearing formations. The magnetic and DC resistivity interpretations were confirmed by drilling which have provided a clear idea about the hydrogeological regime of the study area. The selected drilled well is successfully productive and it produces 30 m3/h.  相似文献   

14.
In three field campaigns between the years 2000 and 2004 geophysical measurements were conducted in the Ejina Basin, NW China. Research work in the year 2004, which is described in this paper, was concentrated on the Gurinai Structure (101°25′E, 41°N) situated in the southeastern part of the Ejina Basin in transition to the dune fields of the Badain Jaran Shamo. On satellite images the Gurinai Structure can be identified by two almost 100 km long, subparallel, N–S-striking lineaments, which may indicate tectonic deformations of late Quaternary sediments. To get a coherent picture of the structure a geophysical survey employing three electromagnetic methods – magnetotellurics (MT), transient electromagnetics (TEM), and geoelectrics (DC) – has been conducted to map the subsurface resistivity at different depth scales.The geophysical data interpretation for shallow and intermediate depth down to a few hundred meters links the subsurface distribution of electric resistivity to geomorphological units known from field work in reference with satellite images. The westerly lineament of the Gurinai Structure coincides with a subvertical change in electric resistivity. Together with geomorphological indications from fieldwork and the analysis of elevation data (SRTM), a tectonic deformation of unconsolidated sediments along a fault with an extensional component is interpreted. In the central and eastern part of the Gurinai Structure a shallow resistive subsurface layer can be traced into the first dunes of the Badain Jaran Shamo. This resistive subsurface layer is linked to the presence of fresh water, indicating infiltration from the dune field. Also, in the eastern part of the Gurinai Structure a resistive, approximately ENE-striking feature can be seen at intermediate depth, which is interpreted as a crystalline basement ridge. Towards the southern margin of the Gurinai Structure a trough-shaped unit with low resistivities and a thickness of about 1 km is identified and can be explained by a sediment package saturated with fluids of high salinity or substantial amounts of clay. The strike direction of the structure can be connected to the regional pattern of tectonic faults and seismicity.The interpretation of electromagnetic data at various depth scales contributes to the general understanding of the Ejina Basin's buildup and tectonic setting in the vicinity of the Gurinai Structure.  相似文献   

15.
Previous time-lapse Electrical Resistivity Tomography (ERT) studies have experienced difficulties in reconstructing reliable calculated resistivity changes in the subsurface. Increases or decreases of resistivity appear in the calculated ERT image where no changes were noted in the subsurface, leading to erroneous hydrological interpretations of the geophysical results. In this article, we investigate how a variation of actual resistivity with time and at shallow depth can influence time-lapse ERT results and produce resistivity artefacts at depth. We use 1 and 2-D numerical modelling to simulate infiltration scenarios. Using a standard time-lapse inversion, we demonstrate the resistivity artefact production according to the electrode spacing parameter. We used an advanced inversion methodology with a decoupling line at shallow depth to attenuate or remove resistivity artefacts. We also applied this methodology to a field data set obtained in a semi-arid environment in Burkina Faso, West Africa. Here, time-lapse ERT shows several resistivity artefacts of calculated resistivity if a standard inversion is used. We demonstrate the importance of a dense sampling of shallow resistivity variations at shallow depth. Advanced interpretation allows us to significantly attenuate or remove the resistivity artefact production at intermediate depth and produce reliable interpretation of hydrological processes.  相似文献   

16.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

17.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

18.
Rise of groundwater level becomes an emerging concern at Wonji irrigation field, Main Ethiopian Rift. An integrated study based on geophysical resistivity methods is conducted at Wonji wetland to understand the link between irrigation water and the shallow aquifer system as well as to confirm the current concern of groundwater rise. The study was also intended to improve the uncertainty of understanding the hydrogeology of Wonji wetland including the extent and direction of groundwater–surface water interaction. The vertical and horizontal contacts between the different geological series of the Wonji area are resolved with 2D high-resolution geophysical imaging. Results from both VES and 2D tomography show low resistivity layers under Wonji irrigation field with narrow ranges in resistivity variation which corresponds to a homogeneous saturated layer. The geoelectric sections reveal two fault systems running NW–SE and N–S directions which impede lateral groundwater flow. Furthermore, groundwater is converged towards the Wonji irrigation site strained by these fault systems. The geophysical results show strong link between irrigation water and the shallow unconfined aquifer as well as among the local and regional flow systems.  相似文献   

19.
选频法是音频大地电场法的进一步应用与发展。本文通过实践应用说明选频法在浅层地下水勘探中的有效性,并对选频法测深极距(MN)与地下水埋深之间的关系开展对比分析和初步理论研究。首先,采用水平交变电场、交变磁场共同作用下的均匀半空间中低阻导电球体简化地质地球物理模型,对选频法测深曲线开展正演计算;然后,对选频法在广西“十二五”农村饮水安全工程应用中的131口钻井出水量情况进行统计,并对其中98口钻井的钻探情况开展详细列表统计分析,对比研究测深曲线异常处MN极距大小与实际钻探出水深度之间的关系。理论分析与实践应用表明,选频法在浅层地下水勘探中效果明显,是一种确定浅层地下水井位的有效方法;同时,实践统计结果表明,选频法测深法异常曲线处MN极距的大小与实际钻探出水深度之间存在1∶1的近似关系,验证了理论模拟计算结果的正确性;另外,本文的研究成果表明,在浅层(<200 m)天然电磁法勘探中,天然电场观测值的大小除了与大地的电阻率、信号的频率有关外,还与电极距大小是相关的。  相似文献   

20.
The use of wastewater for irrigation in sandy soil increases the pollution risk of the soil and may infiltrate to the shallow groundwater aquifer. In such environment, some important parameters need to be obtained for monitoring the wastewater in the unsaturated zone over the aquifer. These parameters include clay content, heterogeneities of the upper soils, depth to the aquifer and the variations of groundwater quality. In the present work, the efficiency of DC resistivity method in forms of 1-D and 2-D measurements was studied for wastewater monitoring in the Gabal el Asfar farm, northeast of Cairo, Egypt. Forty-one Schlumberger soundings (VES) were performed then followed by three pole-dipole 2-D profiles along some considered regions within the area. The resistivity measurements were integrated with the boreholes, hydrogeological and hydrochemical (surface and groundwater samples) information to draw a clear picture for the subsurface conditions. The obtained results were presented as cross sections and 3-D visualization to trace the clay intercalations within the unsaturated zone. In addition, a vulnerability map was created using the obtained results from 1-D Schlumberger survey and confirmed with the 2-D resistivity profiling. The obtained results have shown that the 2-D resistivity imaging technique is a powerful tool for mapping the small-scale variability within the unsaturated zone and the wastewater infiltration. However, limitations of resistivity techniques were observed in the area with limited resistivity contrast such as thin clay layers with brackish water background. Under that condition, the measured pattern of resistivity distributions depends on the applied electrode array, electrode spacing and using the available geological information during the inversion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号