首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progress on shelf and slope circulation in the northern South China Sea   总被引:1,自引:0,他引:1  
Influenced by the seasonally reversed monsoons, water exchange through straits, and topography, the shelf and slope circulation in the northern South China Sea (NSCS) is complex and changeable. The typical current system in the NSCS consists of the slope current, South China Sea warm current (SCSWC), coastal current, and associated upwelling (in summer) and downwelling (in winter). This paper reviews recent advances in the study of NSCS shelf and slope circulation since the 1990s, and summarizes the roles of Kuroshio intrusion, the monsoons, topography, and the buoyancy effect of the Pearl River plume in the shelf and slope current system of the NSCS. We also point out some potential scientific issues that require further study, such as the dynamic connection between the internal basin and shelf areas of the NSCS, the persistence of the SCSWC in winter, the temporo-spatial characteristics of downwelling during winter in the NSCS, and its material and energy transport.  相似文献   

2.
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season.  相似文献   

3.
《Continental Shelf Research》1999,19(9):1221-1245
This paper presents some recent results of drifters released on the West Florida Shelf during 1996–1997 and compares with the numerical model results of the wind-driven circulation. Using satellite tracked surface drifters during the one year period from February 1996 to February 1997, a drifter free region, called the “forbidden zone”, is found over the southern portion of the West Florida Shelf. This finding is consistent with historical drift bottle data and with a recent numerical model study of the West Florida Shelf circulation response to climatological wind forcing. Direct drifter simulations by numerical model during March 1996 show a good agreement with both the in situ ADCP current observation and drifter observation. Three mechanisms are proposed for the observed Lagrangian features. The primarily dynamic mechanism is the along-shore wind forcing, which induces a coastal jet that tends to leave the coast and the bottom onshore and near surface offshore transports. The second one is the convergent coastal geometry and bottom topography for the southward flow in central shelf near Tampa Bay that enforces the coastal jet and the bottom and near surface transport. The last is a kinematic one, simply due to the short along-shore Lagrangian excursion, driven by the typical synoptic weather systems. Thus near surface shelf waters over the north may not reach the southern coast of the West Florida. Implication is that surface hazard such as oil spill that may occur outside of the southern West Florida shelf may not greatly impact the southern coastal region except Florida Keys. However, the biological and chemical patches over the north that may occur in the water column such as red tides still can easily reach the southern coastal region through the subsurface and bottom waters.  相似文献   

4.
A fine-resolution primitive equation numerical model is constructed for the Iberian continental shelf and slope region, with open boundaries to the north, south and west. The model is forced by climatological wind fields and relaxed at the surface to climatological temperature and salinity fields. A series of numerical experiments is conducted to investigate the influence of the open boundary conditions. The numerical results include coastal upwelling in summer and a poleward current in winter. The effects of advection of Mediterranean Water and eastern North Atlantic Central Water feature in the circulation. Qualitative comparisons are made with observations.  相似文献   

5.
A hydrodynamic model is employed to derive the magnitude of on-shelf fluxes through a shelf-break canyon for a wide range of canyon sizes and ambient oceanic conditions. Predicted canyon-upwelling fluxes are of the order of 0.05–0.1 Sv (1 Sv=1 million m3/s), being several orders of magnitude greater than upslope fluxes in the bottom Ekman layer on the ambient continental slope. On the basis of ∼150 simulations conducted, a bulk formula of upwelling flux in a submarine canyon is derived. For typical conditions, the upwelling flux varies quadratically with forcing strength (speed of incident flow), linearly with canyon depth, and is inversely proportional to the buoyancy frequency of the density stratification inside the canyon. Other parameters such as density stratification above shelf-break depth and bottom friction are found to have minor influences on the resultant canyon-upwelling flux.  相似文献   

6.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

7.
Based on literature data and shipboard observations, this study investigated the main environmental characteristics of the seafloor topography, current field, front, and upwelling that are closely related to hypoxia occurrence off the Changjiang estuary. The physical processes of the plume front and upwelling off the Changjiang estuary in summer were coupled. The vertical distribution pattern of the plume front was closely related to the upwelling. By reviewing and analyzing the historical summer hypoxia events off the Changjiang estuary, we statistically demonstrated the spatial structure of the horizontal distribution of the hypoxic zone and investigated the location of occurrence zone of the hypoxia. We found that the dissolved oxygen (DO) concentration on the inner continental shelf off the estuary showed a “V” shape in relation to station depth. Therefore, we noted that the hypoxic water on the inner continental shelf mostly occurred on the slopes with steep seafloor topography. Base on the current understanding of the hypoxic mechanisms off the Changjiang estuary, we analyzed the biogeochemical mechanisms that could cause the steep terrain off the Changjiang estuary to become the main areas prone to summer hypoxia and explained the internal relations between the location of the hypoxic zone on the slopes and the plume front and upwelling. The plume front and upwelling off the Changjiang estuary and their coupling were important driving forces of summer hypoxia. The continuous supply of nutrients affected by the interaction of the plume front extension of the Changjiang Diluted Water (CDW) and upwelling and the favorable light conditions were important mechanisms causing the phytoplankton blooms and benthic hypoxia off the Changjiang estuary in summer. By analyzing oxygen utilization, organic carbon mineralization, and nutrient regeneration in the hypoxic zone, we observed that the significant oxygen utilization process off the Changjiang estuary in summer also mainly occurred near the steep slopes with front and upwelling features and confirmed the apparent nutrient loss in the benthic hypoxic zone. Meanwhile, our analysis revealed that the sediment resuspension in the benthic boundary layer in the mud areas off the Changjiang estuary could also affect the oxygen utilization and mineralization of organic carbon and nutrient recycling and regeneration. This study also demonstrated that the steep terrain off the Changjiang estuary was the main location for summer acidification, and the coupling between the plume front and upwelling on the steep slopes was an important physical driving force inducing summer benthic acidification. Finally, we discussed issues to address in future studies of the hypoxic zone and water acidification off the Changjiang estuary.  相似文献   

8.
Based on literature data and shipboard observations,this study investigated the main environmental characteristics of the seafloor topography,current field,front,and upwelling that are closely related to hypoxia occurrence off the Changjiang estuary.The physical processes of the plume front and upwelling off the Changjiang estuary in summer were coupled.The vertical distribution pattern of the plume front was closely related to the upwelling.By reviewing and analyzing the historical summer hypoxia events off the Changjiang estuary,we statistically demonstrated the spatial structure of the horizontal distribution of the hypoxic zone and investigated the location of occurrence zone of the hypoxia.We found that the dissolved oxygen(DO)concentration on the inner continental shelf off the estuary showed a"V"shape in relation to station depth.Therefore,we noted that the hypoxic water on the inner continental shelf mostly occurred on the slopes with steep seafloor topography.Base on the current understanding of the hypoxic mechanisms off the Changjiang estuary,we analyzed the biogeochemical mechanisms that could cause the steep terrain off the Changjiang estuary to become the main areas prone to summer hypoxia and explained the internal relations between the location of the hypoxic zone on the slopes and the plume front and upwelling.The plume front and upwelling off the Changjiang estuary and their coupling were important driving forces of summer hypoxia.The continuous supply of nutrients affected by the interaction of the plume front extension of the Changjiang Diluted Water(CDW)and upwelling and the favorable light conditions were important mechanisms causing the phytoplankton blooms and benthic hypoxia off the Changjiang estuary in summer.By analyzing oxygen utilization,organic carbon mineralization,and nutrient regeneration in the hypoxic zone,we observed that the significant oxygen utilization process off the Changjiang estuary in summer also mainly occurred near the steep slopes with front and upwelling features and confirmed the apparent nutrient loss in the benthic hypoxic zone.Meanwhile,our analysis revealed that the sediment resuspension in the benthic boundary layer in the mud areas off the Changjiang estuary could also affect the oxygen utilization and mineralization of organic carbon and nutrient recycling and regeneration.This study also demonstrated that the steep terrain off the Changjiang estuary was the main location for summer acidification,and the coupling between the plume front and upwelling on the steep slopes was an important physical driving force inducing summer benthic acidification.Finally,we discussed issues to address in future studies of the hypoxic zone and water acidification off the Changjiang estuary.  相似文献   

9.
An upwelling system exists in the coastal waters of the northern South China Sea (NSCS), a region that is frequently affected by tropical cyclones in summer. This study investigates the evolution of the NSCS monsoon-driven upwelling system and the effects of the Talim and Doksuri tropical cyclones on the system using in situ observational data obtained at three mooring stations, one land-based meteorological station, and concurrent satellite remote sensing data for the NSCS coastal waters from May to July 2012. The results show that the occurrence and evolution of the upwelling system were mainly controlled by the Asian southwest monsoon, while the eastward current also made important contributions to the upwelling intensity. A decrease in the bottom water temperature and shifts in the along-shore and cross-shore currents were direct evidence of the establishment, existence, and recovery of this upwelling. Tropical cyclones have significant impacts on hydrodynamics and can thus influence the evolution of the NSCS upwelling system by changing the local wind and current fields. Variations in water level and local current systems impeded the development of upwelling during tropical cyclones Talim and Doksuri in the study area, which have low-frequency fluctuations of approximately 2–10 days. These variations were the results of the coupled interactions between local wind fields, coastal trapped waves, and other factors. The hydrodynamic environment of the marine water (including coastal upwelling system) rapidly recovered to normal sea conditions after each cyclone passed due to the relatively short duration of the impact of a tropical cyclone on the dynamic environment of the waters.  相似文献   

10.
Abstract

One of the central unsolved theoretical problems of the large scale ocean circulation is concerned with explaining the very large transports measured in western boundary currents such as the Gulf Stream and the Kuroshio. The only theory up to now that can explain the size of these transports is that of non-linear recirculation in which the advective terms in the momentum equations became important near the western boundary. In this paper an alternative explanation is suggested. When bottom topography and baroclinic effects are included in a wind-driven ocean model it is shown that the western boundary current can have a transport larger than that predicted from the wind stress distribution even when the nonlinear advective terms are ignored. The explanation lies in the presence of pressure torques associated with bottom topography which can contribute to the vorticity balance in the same sense as the wind stress curl.

Three numerical experiments have been carried out to explore the nature of this process using a three dimensional numerical model. The first calculation is done for a baroclinic ocean of constant depth, the second for a homogeneous ocean with an idealized continental slope topography, and the third for a baroclinic ocean with the same continental slope topography. The nature of the vorticity balance and of the circulation around closed paths is examined in each case, and it is shown that bottom pressure torques lead to enhanced transport in the western boundary current only for the baroclinic case with variable depth.  相似文献   

11.
Abstract

We consider the linearized stability of a barotropic coastal current flowing parallel to a straight coastline over a continental shelf and slope whose depth varies monotonically with distance from the coast. Some necessary conditions for stability and various semi-circle theorems are reviewed for general current profiles and bottom topography. A criterion for topography to be a destabilizing influence is derived. Some general results for stable waves are also described. Analytic solutions are obtained for a piece-wise linear current profile and the exponential depth profile (Buchwald and Adams, 1968). Dispersion diagrams are obtained for a monotonic current profile, where it is shown that the effect of topography is destabilizing, and for a triangular current profile. The dispersion diagrams generally contain a finite number (usually one or two) of unstable waves, and a set of stable waves, which may be infinite in number. The results are applied to some specific coastal regimes.  相似文献   

12.
Tal Ezer 《Ocean Dynamics》2017,67(5):651-664
Two aspects of the interactions between the Gulf Stream (GS) and the bottom topography are investigated: 1. the spatial variations associated with the north-south tilt of mean sea level along the US East Coast and 2. the high-frequency temporal variations of coastal sea level (CSL) that are related to Gulf Stream dynamics. A regional ocean circulation model is used to assess the role of topography; this is done by conducting numerical simulations of the GS with two different topographies–one case with a realistic topography and another case with an idealized smooth topography that neglects the details of the coastline and the very deep ocean. High-frequency oscillations (with a 5-day period) in the zonal wind and in the GS transport are imposed on the model; the source of the GS variability is either the Florida Current (FC) in the south or the Slope Current (SC) in the north. The results demonstrate that the abrupt change of topography at Cape Hatteras, near the point where the GS separates from the coast, amplifies the northward downward mean sea level tilt along the coast there. The results suggest that idealized or coarse resolution models that do not resolve the details of the coastline may underestimate the difference between the higher mean sea level in the South Atlantic Bight (SAB) and the lower mean sea level in the Mid-Atlantic Bight (MAB). Imposed variations in the model’s GS transport can generate coherent sea level variability along the coast, similar to the observations. However, when the bottom topography in the model is modified (or not well resolved), the shape of the coastline and the continental shelf influence the propagation of coastal-trapped waves and impact the CSL variability. The results can explain the different characteristics of sea level variability in the SAB and in the MAB and help understand unexpected water level anomalies and flooding related to remote influence of the GS.  相似文献   

13.
The shelf-break acts as a separator between the coastal ocean and the open ocean. Circulation (particularly deep near-bottom flow) is restricted from crossing the bathymetry. Eddies become elongated in the region of the shelf-break restricting exchange. An estimate of the horizontal eddy diffusivity over the shelf-break of less than 10m2s-1 is found from a numerical model. Various mechanisms are responsible for the weak cross-isobath flow that does occur. One is the increase of the Rossby number over small-scale topography such as submarine canyons. Along-shore flow (in the direction opposite to Kelvin wave propagation) generates upwelling through submarine canyons. A review of upwelling through submarine canyons is given. The deep cross-shelf flow generated by the canyons is shown to be as significant as the wind-driven upwelling in some regions. Examples for the reduction of flow across the shelf-break and for upwelling through canyons are taken from the West Coast of Vancouver Island.  相似文献   

14.
Results of field observations of current dynamics in the frontal zone of the western Middle Caspian are given. The cyclonic circulation over the western slope in winter is shown to be a unidirectional intense current with velocities up to 100 cm/s. In summer, the current slows down and separates into branches—it turns southwestward and westward at the slope depth down to 150 m, southward and southeastward at the depth of ~100–350 m, and eastward at larger depths. In summer, shelf currents interact with the flow of Middle Caspian cyclonic circulation, resulting in that anticyclonic vortices reach the shelf.  相似文献   

15.
The South Florida Hybrid Coordinate Ocean Model (SoFLA-HYCOM) encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne Bay) and deep regions (the Straits of Florida), including Marine Protected Areas (the Florida Keys Marine Sanctuary and the Dry Tortugas Ecological Reserve). The presence of the strong Loop Current/Florida Current system and associated eddies connects the local and basin-wide dynamics. A multi-nested approach has been developed to ensure resolution of coastal-scale processes and proper interaction with the large scale flows. The simulations are free running and effects of data assimilation are introduced through boundary conditions derived from Global Ocean Data Assimilation Experiment products. The study evaluates the effects of boundary conditions on the successful hindcasting of circulation patterns by a nested model, applied on a dynamically and topographically complex shelf area. Independent (not assimilated) observations are employed for a quantitative validation of the numerical results. The discussion of the prevailing dynamics that are revealed in both modeled and observed patterns suggests the importance of topography resolution and local forcing on the inner shelf to middle shelf areas, while large scale processes are found to dominate the outer shelf flows. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and proximity to a large scale current system requires a dynamical downscaling approach, with simulations that are nested in a hierarchy of data assimilative outer models.  相似文献   

16.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

17.
The sea level and the barotropic, frictional circulation response for the New York Bight are used to demonstrate the effects of external sea-level forcing, bathymetry, and variable friction. The governing equation is the steady, integrated vorticity equation and is computed by finite differencing over a curvilinear grid conforming to the 10- and 100-m isobaths and extending for 250 km alongshore. The boundary conditions are based on the hypothesis that the dynamics of the shelf are driven by the external sea-level gradient and the coastal no-flux condition; and consequently the conditions at the lateral boundaries are dependent thereon. Therefore, the external sea-level slope must be independently specified, and the lateral boundary conditions must be dependently generated. The diabathic component of the external sea slope forces the calm wind circulation by its effect on the transport through the upstream boundary; and the parabathic component has also an important modifying effect by forcing a shelf convergent transport. The parabathic sea slope at the coast is independent of its offshore value, being instead a direct product of the coastal boundary condition.The bottom friction is expressed as related to the sea level through a bottom length parameter and a veer angle, both of which are taken to increase shoreward. An additional bottom stress component, related to the surface stress, is determined for bottom depths less than the Ekman depth. Such bottom stress variability produces significant alterations in the nearshore flow field, over the constant bottom stress formulation, by reducing it and causing it to veer downgradient and downwind in the nearshore.The model is forced by different wind directions and the results are discussed. The circulations generally conform to the observed mean flow patterns, but with several smaller-scale features. The strong bathymetric feature of the Hudson Shelf Valley causes a polarized up- and downvalley flow for winds with an eastward or westward component, respectively. Under mean westerly winds, there is a divergence in the shelf valley flow at about the 60-m isobath. The Apex gyre existing off the western tip of Long Island becomes more extensive for winds changing from northeast to southwest. Mean flow reversals (to the northeast) occur off both Long Island and New Jersey for wind directions changing counterclockwise from northwest to southeast and from west to east, respectively. Southeastward transport over the outer New Jersey shelf tends to be enhanced by wind and external sea-level conditions; and the transport over the New Jersey midshelf, particularly in the lee of the shelf valley, tends to be weak and variable also under these mean conditions.  相似文献   

18.
Experiments are described using a three-dimensional, shelf circulation model. The model geometry consists of a rectangle in latitude-longitude space with a shelf-slope region bordering the northern and western boundaries and a deep ocean region in the southeast. Relatively light water is flushed in through the northern boundary and allowed to exit through the southern boundary, a situation of relevance to the southward flowing Labrador Current. In an earlier paper, we showed the downstream development of a shelf break current. In that paper, bottom friction was parallel to bottom geostrophic velocity. In this paper, bottom friction is parallel to bottom velocity. This leads to a more diffuse downstream jet. We show that changing the density contrast across the front does not change its width. On the other hand, a sharper front is obtained when a small trough is introduced into the bottom topography. We also describe an experiment in which the density of the inflowing water is varied seasonally. This leads to a seasonal redistribution of the southward transport across the shelf, similar to a suggestion made by Myers et al. [(1989) Seasonal and interannual variability of the Labrador Current and West Greenland Current. Department of Fisheries and Oceans, Canada] for the Newfoundland Shelf. This redistribution results from the seasonal pulsing of fresh water down the shelf, which, in turn, influences transport through the Joint Effect of Baroclinicity And Relief (JEBAR), and is similar to the mechanism proposed by Lazier and Wright [(1993) Journal of Physical Oceanography, 23, 659–678].Other results concern the splitting of the shelf break jet. We show that in the previous paper, the splitting of the jet was influenced by the numerical formulation of the outflow condition at the southern boundary. We also show that the splitting can be suppressed by specifying the density of water flowing into the model domain through the southern boundary, rather than allowing this to be determined by the previous history of mixing and outflow on the boundary.  相似文献   

19.
Vertical sections of temperature and chlorophyll a across the slopes and shelf of the Celtic Sea in the summer show the characteristic regimes; oceanic, slope, shelf, frontal, and mixed. Increases of surface chlorophyll a are commonly observed along the shelf tidal fronts where the thermocline outcrops at the surface, and also at the shelf-break. The variations in phytoplankton biomass are most readily interpreted in terms of the effects of physical mixing processes due to wind and tide on the availability of inorganic nutrients and light energy. On the shelf, mixing processes, both due to internal waves, inertial currents, and to boundary induced turbulence caused by tidal shear associated with the sea floor, play an important role in determining the observed vertical structures. A numerical model is used to define regions where tidal mixing processes are likely to be relatively important and provides the physical framework for interpreting the temperature and chlorophyll a profiles.  相似文献   

20.
Historical and recent oceanographic cruise data, MODIS chlorophyll-a satellite data, and an analytical model are used to examine SST fronts in the entrance to Spencer Gulf, South Australia. The fronts (2–3 °C) due to the contrast between warm Spencer Gulf waters and cooler waters of the continental shelf are readily observable on satellite imagery. Three water masses: cool, fresh upwelled shelf water; warm, salty Great Australian Bight water; and very warm and salty Spencer Gulf bottom water occupy the area. In consequence a summer density minimum is formed at the entrance to Spencer Gulf. The analytical model predicts that this thermohaline structure sets up an ageostrophic circulation, which favours upwelling in the central portion of the entrance. This is confirmed by the satellite data which show an increased chlorophyll-a concentration in the vicinity of the upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号