首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
《Quaternary Science Reviews》2007,26(22-24):2864-2882
In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula and the subsequent lacustrine, volcaniclastic and fluvial deposits associated with the first phase of volcanism (∼1.2 Ma) in this area.Early development of an east–west drainage system in this area resulted from tectonic adjustments to north–south extension and the formation of east–west-oriented grabens. Headward erosion of drainage entering the main Alaşehir graben led to the progressive capture of pre-existing drainage systems as eastward (headward) erosion upstream tapped drainage networks previously formed in internally draining NNE–SSW-oriented basins. Within one of these, the Selendi Basin, part of this evolutionary sequence is preserved as a buried river terrace sequence. Eleven terraces are preserved beneath alluvial fan sediments that are, in turn, capped by basaltic lava flows. Using the available geochronology these terraces are considered to represent sedimentation–incision cycles which span the period ∼1.67–1.2 Ma. Although progressive valley incision is a fluvial system response to regional uplift, the frequency of terrace formation within this time period suggests that the terrace formation resulted from sediment/water supply changes, a consequence of obliquity-driven climate changes. The production of sub-parallel terraces suggests that during this period the river was able to attain a quasi-equilibrium longitudinal profile adjusted to the regional uplift rate. Thus, the incision rate of 0.16 mm a−1 during this period is believed to closely mirror the regional uplift rate.After the onset of volcanism at ∼1.2 Ma, there is a destruction of the dynamic link between fluvial system behaviour and climate change. The repeated damming of the trunk river and its tributaries led to the construction of complex stratigraphic relationships. During the first phase of volcanism the palaeo-Gediz river was dammed on numerous occasions leading to the formation of a series of lakes upstream of the dams in the palaeo-Gediz valley. Variations in lake level forced localised base-level changes that resulted in complex fluvial system response and considerable periods of disequilibrium in profile adjustment. Furthermore, response to these base-level changes most likely disrupted the timing of the incisional adjustment to the on-going regional uplift, thus making the use of this part of the archive for inferring regional uplift rates untenable.  相似文献   

2.
The Kunlun Range, a reactivated orogenic belt, constitutes the northern margin of the Tibetan Plateau. The extreme relief and major landforms of the Kunlun Range are a product of late Cenozoic tectonics and erosion. However, well-developed late Quaternary terraces that occur along the northern slope of the Kunlun Range probably resulted from climatic change rather than surface uplift. The terrace sequences formed in thick Quaternary valley fills and have total incision depths of 50–60 m. Optically stimulated luminescence dating was employed to place time controls on the valley fills and associated terraces. Dating results suggest that periods of significant aggradation were synchronous between different rivers and correspond to the last glacial stage. The abrupt change from aggradation to incision occurred between 21.9 ± 2.7 and 16 ± 2.2 ka, coincident with the last glacial–interglacial transition. Additional terraces developed during the late glacial period and early to middle Holocene. Based on a broader set of chronological data in northern Tibet, at least four regional incision periods can be recognized. Chronological data, terrace elevation profiles, and climate proxy records suggest that these terracing periods were triggered by cool and/or wet climatic conditions. A geometric survey of the riverbed longitudinal profile suggests that surface uplift serves as a potential dynamic forcing for long-term incision. A model is proposed for terrace formation as a response to climatic perturbation in an uplifted mountain range.  相似文献   

3.
《Quaternary Science Reviews》2007,26(22-24):2897-2912
The Late Cenozoic development of the River Tana in Kenya has been reconstructed for its central reach near its confluence with the River Mutonga, which drains the Mount Kenya region. Age control for this system has been provided by K–Ar and Ar–Ar dating. Between 3.21 and 2.65 Ma a major updoming occurred, in relation to the formation of the Kenyan rift valley. The tilting related to this doming has been reconstructed from lava flows that preserve former river gradients. Linear projection of these trends to the current rift valley rim suggests a net updoming of the eastern Gregory Rift valley by at least ∼1 km during 3.21–2.65 Ma. In contrast, since 2.65 Ma the Tana system has been mainly subject to relatively minor epeirogenic uplift. Changing climatic conditions combined with continuing uplift yielded a typical staircase of strath terraces with at least 10 distinct levels. A more detailed reconstruction of the incision rates since 215 ka has been made, by correlating mineralogically fingerprinted volcaniclastic Tana deposits with dated tephras in a lake record. These volcaniclastic sediments were deposited during glacial periods, contemporaneous with lahars. The reconstructed incision rates for the three youngest terraces are ∼0.1–0.2 mm a−1, thus considerably faster than the overall average rate of valley incision since the Mid-Pliocene, of 0.06 mm a−1. A plausible uplift history has been reconstructed using the estimated ages of the Tana terraces and marine terraces on the Indian Ocean coastline. The result suggests an increase in the rate of incision by the River Tana at ∼0.9 Ma, an observation typical in most European river terrace staircases. The reconstructed Late Quaternary development of Tana valley indicates that a similar Quaternary uplift mechanism has operated in both Europe and East Kenya, suggesting a globally applicable process.  相似文献   

4.
《Quaternary Science Reviews》2007,26(22-24):2701-2723
The Seine, Yonne and Somme are the main rivers draining northwestern France and flowing into the Channel. During Pleistocene cold stages they were tributaries of the “Fleuve Manche”. They are characterised by well-developed stepped terrace systems showing up to 10 incision steps for the last 1 Ma. After 15 years of research and the synthesis of stratigraphical, sedimentological, bioclimatical data and numerical dating, these terrace systems are interpreted as the response of the fluvial environments to climatic cyclicity, superimposed on a background of slow tectonic uplift. The comparison of these three terrace systems shows that the incision budget is similar within the studied area (about 55–65 m/1 Ma), implying relative homogeneity of uplift. In the main part of the area, beyond marine influence, the analysis of each stepped alluvial formation shows regular sediment balance generally composed of coarse periglacial gravels (pleniglacial), covered by fine-grained sediments locally overlain by calcareous tufa (interglacial). However, in the Lower Seine valley, close to the present coast, the low terrace includes two estuarine interglacial units interbedded within periglacial gravel units. Nevertheless, until recently evidence of full interglacial conditions remained elusive in fluvial contexts, especially in the Somme. To address these issues a new research programme has been launched on tufa deposits that are the best candidate to register the climatic optimum. Initial results from la Celle (Seine), Saint-Acheul and Caours (Somme) allow palaeoenvironmental reconstructions of MIS 11 and 5e, and thus confirm the importance of calcareous tufa to define a reference record of Pleistocene Interglacials for northern France. Moreover, it has been previously demonstrated that the main incision leading to terrace formation can be attributed to the transition between interglacial and glacial (during early glacial phases). The new results from interglacial records have important implications concerning the precise occurrence of the major incision phases within the climatic cycle as they provide the starting point immediately preceding downcutting.  相似文献   

5.
潘保田  胡振波 《冰川冻土》2021,43(3):853-863
揭示河流系统响应气候变化和地表抬升的机制是理解流域地貌演化以及水系发育过程的基础,其核心难题是如何充分认识它们在阶地发育中扮演的角色。以往的研究倾向于分开讨论气候变化和地表抬升在河流阶地发育中的作用,认为河流堆积/侧蚀和下切行为分别与冰期和间冰期气候对应,或者将阶地作为地表抬升的直接证据。首先,从上下游河段对比的视角初步解释了黄河中游响应气候变化和地表相对汾渭盆地抬升发育阶地的过程。1.2 Ma以来黄河下蚀鄂尔多斯地块和峨眉台地分别形成了7级阶梯状阶地和6级堆积阶地序列。黄土地层分析结合年代学研究揭示这些阶地面都直接上覆一层古土壤,指示它们形成于气候由冰期向间冰期的过渡阶段,即使在沉降的盆地依然如此。然而,黄河中游并没有在1.2 Ma以来的每一次冰期向间冰期转换都发育阶地,说明气候虽能通过控制河流堆积-侧蚀与下切行为的转换决定阶地的形成时代,但其本身并不是阶地形成的唯一控制因素。在峨眉台地沉降的背景下,黄河无法形成正常的阶梯状阶地序列,取而代之的是堆叠的阶地序列(阶地越年轻拔河高度越大);而当鄂尔多斯地块相对汾渭盆地抬升缓慢时,黄河仅能在极为干旱的冰期向间冰期过渡阶段形成阶地;相比之下,它们相对汾渭盆地抬升速率都足够快速时,驱动黄河近乎对每一次的冰期向间冰期转换都能做出响应而发育阶地。以上黄河中游阶地与气候和地表抬升的对比模式揭示出,快速地表抬升也是阶梯状阶地序列发育不可或缺的因素,能驱使河流在冰期向间冰期过渡阶段显著下切,拉大相邻阶地面垂直距离从而利于后期保存。因此,研究认为黄河中游发育的系列阶地是响应气候变化和地表相对汾渭盆地抬升的结果。  相似文献   

6.
Palaeocompetence analysis and palaeodischarge estimation techniques are applied to a late Pleistocene–early Holocene gravel terrace in the Mahi River Basin, western India. Terrace sedimentology, comprising gravels overlain by sand lithofacies suggests a gradual change in palaeohydrological conditions marking a switch from braided to meandering fluvial styles. The discharge values for the gravel bedforms based on the clast size and the cross bed set thickness are estimated between ∼150–180 m3 s−1 comparable with the present day observed values albeit with a much higher competence. Results indicate that fluvial aggradation occurred under low discharge conditions with intermittent high discharge events depositing longitudinal gravel bars. The incision of these gravel bars and the formation of terraces can be attributed to the higher discharge regime post 9.2 ka. The study further indicates that whereas the aggradation of the gravel terrace during the early Holocene was controlled by the large sediment influx, the incision that followed was in response to the increase in the discharge and competence of the river flow.  相似文献   

7.
《Quaternary Science Reviews》2007,26(22-24):2844-2863
We present the first overall synthesis of the terrace deposits of the River Euphrates in SE Turkey, northern Syria, and western Iraq, combining new observations with summaries of data sets from different reaches that had previously been independently studied on a piecemeal basis. The largest number of terraces observed in any reach of the Euphrates is 11, in western Iraq, where this river leaves the uplands of the Arabian Platform. In many other localities not more than 5 or 6 terraces have previously been identified, although we infer that some of these are resolvable into multiple terraces. These terraces are typically formed of gravel, principally consisting of Neotethyan ophiolite and metamorphic lithologies transported from Anatolia. Although older gravels are also evident, most of the Euphrates terrace deposits appear, given the chronologies that have been established for different parts of the study region, to date from the late Early Pleistocene onwards, the cold stages most often represented being interpreted as marine Oxygen Isotope Stages 22, 16, 12, 8, 6 and/or 4, and 2. The formation of this terrace staircase reflects regional uplift of the Arabian Platform. Estimated amounts of uplift since the Middle Pliocene decrease southeastward from almost 300 m in SE Turkey to ∼150 m in western Iraq. Uplift rates increased in the late Early Pleistocene, the uplift estimated since then decreasing from ∼110 m in SE Turkey to a minimum of ∼50 m in the Syria–Iraq border region, then increasing further downstream across western Iraq to ∼70 m. Numerical modelling of this uplift indicates a relatively thin mobile lower-crustal layer, consistent with the low surface heat flow in the Arabian Platform.  相似文献   

8.
《Quaternary Research》2014,81(3):400-423
The way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~ 8 ± 1 Ma followed by stepwise accelerated rise at ~ 3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~ 1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~ 8 Ma and later also with the global cooling since ~ 3.2 Ma, suggesting a major role for tectonic forcing of the cooling.  相似文献   

9.
Plio-Pleistocene deposits of the Lower Colorado River (LCR) and tributary alluvial fans emanating from the Black Mountains near Golden Shores, Arizona record six cycles of Late Cenozoic aggradation and incision of the LCR and its adjacent alluvial fans. Cosmogenic 3He (3Hec) ages of basalt boulders on fan terraces yield age ranges of: 3.3–2.2 Ma, 2.2–1.1 Ma, 1.1 Ma to 110 ka, < 350 ka, < 150 ka, and < 63 ka. T1 and Q1 fans are especially significant, because they overlie Bullhead Alluvium, i.e. the first alluvial deposit of the LCR since its inception ca. 4.2 Ma. 3Hec data suggest that the LCR began downcutting into the Bullhead Alluvium as early as 3.3 Ma and as late as 2.2 Ma. Younger Q2a to Q4 fans very broadly correlate in number and age with alluvial terraces elsewhere in the southwestern USA. Large uncertainties in 3Hec ages preclude a temporal link between the genesis of the Black Mountain fans and specific climate transitions. Fan-terrace morphology and the absence of significant Plio-Quaternary faulting in the area, however, indicate regional, episodic increases in sediment supply, and that climate change has possibly played a role in Late Cenozoic piedmont and valley-floor aggradation in the LCR valley.  相似文献   

10.
《Quaternary Science Reviews》2007,26(22-24):2937-2957
We present a brief synthesis of the Quaternary fluvial record in the Lower Tagus Basin (central Portugal), concentrating on factors controlling infill and incision. The Holocene part of the record forms the focus of this paper and guides the questioning of the basic assumptions of the established Quaternary fluvial evolution model, in particular the link between sea-level change and fluvial incision-deposition. We suggest that several incision-aggradation phases may have occurred during glacial periods. Major aggradation events may overlap with cold episodes, while incision appears to concentrate on the warming limb of climate transitions. The complex stratigraphy of the Quaternary record in the Lower Tagus valley is influenced by repeated base-level and climate changes.This paper submits the first chronostratigraphic framework for valley fill deposits in the Lower Tagus area. Sea-level rise forced aggradation and controlled deposition of the fine-grained sedimentary wedge underlying the low-gradient Lower Tagus floodplain. Investigations have focused on the lower Muge tributary, where rapidly aggrading estuarine and fluvial environments were abruptly established (∼8150 cal BP) as sea level rose. Base level at the valley mouth controlled the upstream extent of the fine-grained backfill. Tidal environments disappeared abruptly (∼5800 cal BP) when the open estuary at the Muge confluence was infilled by the Tagus River. The decrease and final still stand of sea-level rise led to floodplain stabilisation with peat (∼6400–5200 cal BP) and soil formation (∼5200–2200 cal BP). Localised renewed sedimentation (∼2200–200 cal BP) is linked to human activity.  相似文献   

11.
Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ∼0.5 m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc–continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ∼450 ka. These uplifted terraces are gently warped in a pattern of east–west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100 m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118–128 ka). The only unaltered coral samples are found below 6 m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95 m elevation yields a U-series age of 195 ± 31 ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20 m yield U-series ages of <100 years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region.  相似文献   

12.
Palynological and sedimentological studies of a series of slimes collected from a 284 m-long drill-well from the Kathmandu Basin reveal paleoclimatic records and environmental changes within the Kathmandu Valley during the last 2.5 myr. The slimes are composed of fluvio-deltaic and lacustrine sediments comprising sand beds of 66.3 m and mud beds of 218 m in length. Pollen analyses show Quercus and Cyclobalanopsis are predominant, with frequencies exceeding 70%. Pinus, Alnus and Gramineae are the next dominant taxa. Three fossil pollen zones were discriminated; each zone reflects major climatic change: Zone I, the oldest stage, indicates a cool and rather wet climate during 400 kyr from ca. 2.5 to 2.1 Ma; Zone II, the middle stage, reflects a warm and relatively dry climate without remarkable fluctuation; Zone III is characterized by seven cycles of warm-and-wet and cold-and-dry climate, which reflect the alternation of glacial and interglacial periods. The last cold maximum, 11 m deep, corresponds to the last glacial age around 20 kyr bp, judging from the 14C dating of the uppermost part of the lacustrine sediments.The Paleo-Kathmandu Lake is likely to have been initiated at around 2.1 Ma and to have been filled with black organic mud, the Kalimati Clay. The top of the Kalimati Clay is eroded and was overlain by fluvial sand after the last glacial age. The abrupt appearance of a 4 m-thick fossiliferous sand bed at the top of the middle member suggests a lowering of water level at around 1 Ma.  相似文献   

13.
《Quaternary Science Reviews》1999,18(10-11):1205-1212
A high-resolution East Asian winter monsoon proxy record reconstructed from the Baoji loess section in China shows two major shifts in climate modes over the past 2.5 Ma, one occurring at about 1.7–1.6 Ma BP and the other at about 0.8–0.5 Ma BP. The 1.7–1.6 Ma shift is characterized by a rather abrupt transition of winter monsoon variability from various periodicities to dominant 41-ka cycles, and accompanied by a substantial increase in intensity of winter monsoon winds as manifested by an increase in average loess grain size. The 0.8–0.5 Ma event shows a relatively gradual transition from constant 41-ka cycles to predominant 100-ka climatic oscillations with a significant increase in amplitude. The 0.8–0.5 Ma shift matches that registered in deep-sea δ18O records, whereas the 1.7–1.6 Ma shift is absent in global ice volume changes. This comparison suggests that at about 1.6 Ma BP, the ice sheets in the Northern Hemisphere may have reached a critical size, sufficient to modulate changes in the global climate system. The discrepancy of climate cyclicity between loess and deep-sea records over the 2.5–1.6 Ma interval suggests that the older Matuyama climate evolution cannot be understood simply by a regular 41 ka cycle model on a global scale. More long proxy records derived from continental deposits are needed.  相似文献   

14.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

15.
The Yulong Mountain massif is tectonically active during Quaternary and contains the southernmost glacierized mountains in China, and all of Eurasia. Past glacial remnants remain preserved on the east and west sides of the Yulong Mountains. A ridge of moraine protruded into the Jinsha River at the Daju Basin, damming the river, and forming a lake at the head of the Jinsha River. Cosmogenic 10Be and 26Al provide exposure age dates for the moraine-based fluvial terraces left behind after the dam breached, and for moraine boulders on both the eastern and western sides of the Yulong Mountains. Our results yield exposure ages for the terraces that range from 29 ka to 8 ka, and a downcutting rate of 7.6 m/ka. The preservation of the remaining dam for over 10,000 years suggests stability of the moraine dam and gradual erosion of the dam during drainage of the dammed lake. From the relationship between exposure ages and elevations of the fluvial terraces located in different walls of the Daju fault, we obtain a late Quaternary dip-slip rate of about 5.6 m/ka for the Daju fault. The exposure ages of 10.2 ka and 47 ka for moraine boulders located in the east and west sides of the Yulong Mountains, respectively, coincide with warm periods in the late Quaternary. This implies that precipitation provides the major control for glaciations on the Yulong Mountains, a domain of the southwest Asian monsoon.  相似文献   

16.
The mid-Pleistocene transition (MPT) of the global climate system, marked by a shift of previously dominant 41-ka cycles to lately dominant 100-ka cycles roughly in the mid-Pleistocene, is one of the fundamental enigma in the Quaternary climate evolution. The process and origin of the MPT remain of persistent interest and conjecture. Here we present high-resolution astronomically tuned magnetic susceptibility (MS) and grain‐size records from a complete loess–paleosol sequence at Chaona on the central Chinese Loess Plateau. These two proxies are well-known sensitive indicators to the East Asian summer and winter monsoons, respectively. The records reveal a remarkable two-step simultaneous enhancement of the East Asian summer and winter monsoons at 0.9 Ma and 0.64 Ma, respectively, accompanied with an onset of a clear 100-ka cycle at 0.9 Ma and of a final, predominant 100-ka cycle starting at 0.64 Ma. The mid-Pleistocene stepwise rapid uplift of the Tibetan Plateau could be the mechanism driving the simultaneous enhancement of East Asian summer and winter monsoons and the shift of the periodicities during the MPT by complex positive feedbacks.  相似文献   

17.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

18.
The 27.2 km diameter Tooting crater is the best preserved young impact crater of its size on Mars. It offers an unprecedented opportunity to study impact-related phenomena as well the geology of the crust in the Amazonis Planitia region of Mars. For example, the nearly pristine condition enables the partial reconstruction of the sequence of events for crater formation, as well as facilitates a comparison to deposits seen at the Ries crater in Germany. High-resolution images taken by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) on the Mars Reconnaissance Orbiter spacecraft have revealed a wealth of information on the distribution of features within the crater and beyond the rim: a large central peak, pitted material on the floor and terrace blocks, lobate flows interpreted to be sediment flows, impact melt sheets, four discrete layers of ejecta, and an asymmetric secondary crater field. Topographic data derived from the Mars Orbiter Laser Altimeter (MOLA) and stereo HiRISE and CTX images show that the central peak is ~1100 m high, the lowest point of the crater floor is 1274 m below the highest part of the rim, and the crater rim has ~600 m of variability around its perimeter. Layering within the cavity walls indicates ~260 m of structural uplift of the target material, which constitutes ~35% of the total relief of the rim. Abundant evidence is found for water flowing down the cavity walls, and on the surface of the ejecta layers, both of which took place sometime after the impact event. Thickness measurements of the ejecta layers reveal that the continuous blanket is remarkably thin (~3–5 m) in some places, and that the distal ramparts may be ~60 m high. Crater counts made on the ejecta layers indicate a model age of <3 Ma for the formation of Tooting crater, and that the target rocks have a model age of ~240–375 Ma. It is therefore possible that this may be the source of certain basaltic shergottite meteorites ejected at ~2.8 Ma that have crystallization ages which are comparable to those of the basaltic lava flows that formed the target materials for this impact event. The geology and geomorphology of Tooting crater may help in the interpretation of older large impact craters on Mars, as well as the potential role of target volatiles in the impact cratering process.  相似文献   

19.
末次冰期是距离人类最近的一次冰期,气候异常寒冷且存在高频高幅波动,河流系统如何响应冰期气候的变化值得关注与研究。基于河流系统对气候变化的敏感响应,传统的经典地貌理论认为河流下切在河流阶地形成过程中起着至关重要的作用,河流的下切行为发生在间冰期或者冰期向间冰期的过渡阶段,堆积行为发生于冰期,然而近年来最新的河流地貌研究成果表明,末次冰期河流下切较为普遍。首先对河流阶地形成的传统模式进行总结分析,认为单纯的构造驱动模式存在不合理性,气候也发挥着重要的调节作用;单一的气候变化无法驱动多级且高差较大阶地的形成,地壳抬升往往是必要因素;气候变化是引发河流堆积-下切行为转换形成河流阶地的关键因素。其次通过前人的研究案例总结出末次冰期河流下切行为响应气候变化的三种模式:(1)气候的高度不稳定性引发大规模的洪水事件驱动河流快速下切;(2)快速隆升区气候高频波动叠加构造抬升驱动河流下切;(3)沿海平原地区海平面大幅度下降驱动河流下切。这三种模式对于理解末次冰期河流系统对短尺度高频气候变化的响应以及对河流阶地成因的判断具有十分重要的指导意义。  相似文献   

20.
Ataúro is a key to understanding the late stage volcanic and subduction history of the Banda Arc to the north of Timor. A volcanic history of bi-modal subaqueous volcanism has been established and new whole rock and trace element geochemical data show two compositional groups, basaltic andesite and dacite–rhyolite. 40Ar/39Ar geochronology of hornblende from rhyo-dacitic lavas confirms that volcanism continued until 3.3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. Local scale landscape features of the eastern parts of Ataúro are strongly controlled by normal faults. The continuation of arc-related volcanism on Ataúro until at least 3.3 Ma suggests that subduction of Australian lithosphere continued until near this time. This data is consistent with findings from the earthquake record where the extent of the Wetar seismic gap to a depth of 350 km suggests slab breakoff, as a result of collision, commenced at ∼4 Ma, leading to subsequent regional uplift recorded in elevated terraces on Ataúro and neighbouring islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号