首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contemporary hydrodynamics and morphological change are examined in a shallow microtidal estuary, located on a wave-dominated coast (Port Stephens, NSW, Australia). Process-based numerical modelling is undertaken by combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. Model results suggest that the complex estuarine bathymetry and geometry give rise to spatial variations in the tidal currents and a marked asymmetry between ebb and flood flows. Sediment transport paths correspond with tidal asymmetry patterns. The SE storms significantly enhance the quantities of sediment transport, while locally generated waves by the westerly strong winds also are capable of causing sediment entrainment and contribute to the delta morphological change. The wave/wind-induced currents are not uniform with flow over shoals driven in the same direction as waves/winds while a reverse flow occurring in the adjacent channel. The conceptual sediment transport model developed in this study shows flood-directed transport occurs on the flood ramp while ebb-directed net transport occurs in the tidal channels and at the estuary entrance. Accretion of the intertidal sand shoals and deepening of tidal channels, as revealed by the model, suggest that sediment-infilling becomes advanced, which may lead to an ebb-dominated estuary. It is likely that a switch from flood- to ebb-dominance occurs during the estuary evolution, and the present-day estuary acts as a sediment source rather than sediment sink to the coastal system. This is conflictive to the expectation drawn from the estuarine morphology; however, it is consistent with previous research suggesting that, in an infilling estuary, an increase in build-up of intertidal flats/shoals can eventually shift an estuary towards ebb dominance. Thus, field data are needed to validate the result presented here, and further study is required to investigate a variety of estuaries in the Australian area.  相似文献   

2.
Both natural changes (e.g., tidal forcing from the ocean and global sea level rise) and human-induced changes (e.g., dredging for navigation, sand excavation, and land reclamation) exert considerable influences on the long-term evolution of tidal regimes in estuaries. Evaluating the impacts of these factors on tidal-regime shifts is particularly important for the protection and management of estuarine environments. In this study, an analytical approach is developed to investigate the impacts of estuarine morphological alterations (mean water depth and width convergence length) on tidal hydrodynamics in Lingdingyang Bay, Southeast China. Based on the observed tidal levels from two tidal gauging stations along the channel, tidal wave celerity and tidal damping/amplification rate of different tidal constituents are computed using tidal amplitude and phase of tidal constituents extracted from a standard harmonic analysis. We show that the minimum mean water depth for the whole estuary occurred in 2006, whereas a shift in tidal wave celerity for the M2 tide component occurred in 2009. As such, the study period (1990–2016) could be separated into pre-human (1990–2009) and post-human (2010–2016) phases. Our results show that the damping/amplification rate and celerity of the M2 tide have increased by 31% (from 7 to 9.2 m−1) and 28% (from 7 to 9 m·s−1) respectively, as a consequence of the substantial impacts of human interventions. The proposed analytical method is subsequently applied to analyse the historical development of tidal hydrodynamics and regime shifts induced by human interventions, thus linking the evolution of estuarine morphology to the dominant tidal hydrodynamics along the channel. The observed tidal regime shift is primarily caused by channel deepening, which substantially enlarged the estuary and reduced effective bottom friction resulting in faster celerity and stronger wave amplification. Our proposed method for quantifying the impacts of human interventions on tidal regime shifts can inform evidence-based guidelines for evaluating hydraulic responses to future engineering activities.  相似文献   

3.
Channel meander dynamics in fluvial systems and many tidal systems result from erosion of concave banks coupled with sediment deposition on convex bars. However, geographic information system (GIS) analysis of historical aerial photographs of the Skagit Delta marshes provides examples of an alternative meander forming process in a rapidly prograding river delta: deposition‐dominated tidal channel meander formation through a developmental sequence beginning with sandbar formation at the confluence of a blind tidal channel and delta distributary, proceeding to sandbar colonization and stabilization by marsh vegetation to form a marsh island opposite the blind tidal channel outlet, followed by narrowing of the gap between the island and mainland marsh, closure of one half of the gap to join the marsh island to the mainland, and formation of an approximately right‐angle blind tidal channel meander bend in the remaining half of the gap. Topographic signatures analogous to fluvial meander scroll bars accompany these planform changes. Parallel sequences of marsh ridges and swales indicate locations of historical distributary shoreline levees adjacent to filled former island/mainland gaps. Additionally, the location of marsh islands within delta distributaries is not random; islands are disproportionately associated with blind tidal channel/distributary confluences. Furthermore, blind tidal channel outlet width is positively correlated with the size of the marsh island that forms at the outlet, and the time until island fusion with mainland marsh. These observations suggest confluence hydrodynamics favor sandbar/marsh island development. The transition from confluence sandbar to tidal channel meander can take as little as 10 years, but more typically occurs over several decades. This depositional blind tidal channel meander formation process is part of a larger scale systemic depositional process of delta progradation that includes distributary elongation, gradient reduction, flow‐switching, shoaling, and narrowing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   

5.
Knowledge of the physical processes acting at inlet systems and their interaction with sediments and sediment bodies is important to the understanding of such environments. The objectives of this study are to identify and assess the relative importance of the controlling processes across the complex sandbar system at the Teign inlet (Teignmouth, UK) through the combined application of a numerical model, field data and Argus video images. This allows the determination of the regions dominated by wave processes or by tidal processes and definition of the variability of these regions under different wave, tide and river-discharge conditions. Modelling experiments carried out for one stage of the evolution of the system show that the interaction between tidal motion and waves generates complex circulation patterns that drive the local sediment transport and sandbar dynamics, producing a cyclic morphological behaviour of the sandbars that form the ebb-tidal delta. The relative importance of each physical process on the sediment transport and consequent morphodynamics varies across the region. The main inlet channel is dominated by tidal action that directs the sediment transport as a consequence of the varying tidal flow asymmetry, resulting in net offshore transport. Sediment transport over the shoals and secondary channels at both sides of the main channel is dominated by wave-related processes, displacing sediment in the onshore direction. The interaction between waves and tide-generated currents controls the transport over the submerged sandbar that defines the channels seaward extend. High river discharge events are also proven to be important in this region, as they can change sediment-transport patterns across the area.Responsible Editor: Iris Grabemann  相似文献   

6.
The phenomenon of an increase in tidal wave height in cone-shaped estuaries is studied. The effect of estuary narrowing in the direction of tidal wave propagation (the hydrodynamic effect of confusor) is among the factors amplifying the tide. An opposite effect of turbulent friction, whose manifestation increases with decreasing bay’s depth, conversely, reduces tide amplitude because of the dissipation of tidal wave energy. Stokes diffusion layer also plays a significant role in the formation of wave transformation regime. In an estuary with a median depth, which is much greater than the Stokes layer thickness, the confusor effect is stronger and tide amplitude increases at estuary head. At depths lesser than Stokes layer thickness, the turbulent friction dominates over the confusor effect and the amplitude of tidal wave decreases at the head of the estuary. The depths of the order of Stokes layer thickness cause an interesting intermediate phenomenon—at the entrance into the estuary, first the effect of friction manifests itself, resulting in a decrease in the amplitude of tidal wave, but later, the effect of confusor starts dominating, and the amplitude of tidal wave again increases toward estuary head. When the period of tidal wave coincides with seiche period, a resonance enhancement of seiche oscillations takes place in the estuary.  相似文献   

7.
Five weeks of hourly, 10-min time-exposure video images were used to analyze the meso–macro-tidal double-barred Truc Vert Beach, SW France, under intense wave forcing. The four storms experienced, one of which with an offshore significant wave height over 8 m, induced dramatic changes in the double sandbar system. The subtidal outer bar migrated offshore rapidly (up to 30–50 m/day) and its pre-existing crescentic pattern was wiped out. The seaward-protruding parts of the outer bar barely migrated offshore during the most intense storm, whereas a landward-protruding part was shed off. Over the entire study period, the outer-bar dynamics was dominated by alongshore-averaged changes rather than alongshore non-uniform changes, while the opposite was observed for the inner bar. In addition, the outer-bar dynamics was predominantly controlled by the time-varying offshore wave conditions, whereas the inner-bar dynamics was influenced largely by the tide-range variations. Our observations put forward the key role of morphological settings (the presence of a subtidal bar and its shape) and tidal range in governing inner-bar behaviour within a double sandbar dynamics, and provide strong support for previous suggestions that sandbars cannot be studied in isolation.  相似文献   

8.
The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.  相似文献   

9.
Over the past 30 years, reclamation projects and related changes have impacted the hydrodynamics and sediment transport in the Bohai Sea. Three-dimensional tidal current models of the Bohai Sea and the Yellow Sea were constructed using the MIKE 3 model. We used a refined grid to simulate and analyze the effects of changes in coastline, depth, topography, reclamation, the Yellow River estuary, and coastal erosion on tidal systems, tide levels, tidal currents, residual currents, and tidal fluxes. The simulation results show that the relative change in the amplitude of the half-day tide is greater than that of the full-day tide. The changes in the tidal amplitudes of M2, S2, K1, and O1 caused by coastline changes accounted for 27.76–99.07% of the overall change in amplitude from 1987 to 2016, and water depth changes accounted for 0.93–72.24% of the overall change. The dominant factor driving coastline changes is reclamation, accounting for 99.55–99.91% of the amplitude changes in tidal waves, followed by coastal erosion, accounting for 0.05–0.40% of the tidal wave amplitude changes. The contribution of changes in the Yellow River estuary to tidal wave amplitude changes is small, accounting for 0.01–0.12% of the amplitude change factor. The change in the highest tide level (HTL) is mainly related to the amplitude change, and the correlation with the phase change is small. The dominant factor responsible for the change in the HTL is the tide amplitude change in M2, followed by S2, whereas the influence of the K1 and O1 tides on the change in the HTL is small. Reclamation resulted in a decrease in the vertical average maximum flow velocity (VVAM) in the Bohai Sea. Shallower water depths have led to an increase in the VVAM; deeper water depths have led to a decrease in the maximum flow velocity. The absolute value of the maximum flow velocity gradually decreases from the surface to the bottom, but the relative change value is basically constant. The changes in the tidal dynamics of the Bohai Sea are proportional to the degree of change in the coastline. The maximum and minimum changes in the tidal flux appear in Laizhou Bay (P-LZB) and Liaodong Bay (P-LDB), respectively. The changes in the tidal flux are related to the change in the area of the bay. Due to the reduced tidal flux, the water exchange capacity of the Bohai Sea has decreased, impacting the ecological environment of the Bohai Sea. Strictly controlling the scale of reclamation are important measures for reducing the decline in the water exchange capacity of the Bohai Sea and the deterioration of its ecological environment.  相似文献   

10.
Tidal circulation and energy dissipation in a shallow, sinuous estuary   总被引:2,自引:0,他引:2  
The tidal dynamics in a pristine, mesotidal (>2 m range), marsh-dominated estuary are examined using moored and moving vessel field observations. Analysis focuses on the structure of the M 2 tide that accounts for approximately 80% of the observed tidal energy, and indicates a transition in character from a near standing wave on the continental shelf to a more progressive wave within the estuary. A slight maximum in water level (WL) occurs in the estuary 10–20 km from the mouth. M 2 WL amplitude decreases at 0.015 m/km landward of this point, implying head of tide approximately 75 km from the mouth. In contrast, tidal currents in the main channel 25 km inland are twice those at the estuary mouth. Analysis suggests the tidal character is consistent with a strongly convergent estuarine geometry controlling the tidal response in the estuary. First harmonic (M 4) current amplitude follows the M 2 WL distribution, peaking at mid-estuary, whereas M 4 WL is greatest farther inland. The major axis current amplitude is strongly influenced by local bathymetry and topography. On most bends a momentum core shifts from the inside to outside of the bend moving seaward, similar to that seen in unidirectional river flow but with point bars shifted seaward of the bends. Dissipation rate estimates, based on changes in energy flux, are 0.18–1.65 W m−2 or 40–175 μW kg–1. A strong (0.1 m/s), depth-averaged residual flow is produced at the bends, which resembles flow around headlands, forming counter-rotating eddies that meet at the apex of the bends. A large sub-basin in the estuary exhibits remarkably different tidal characteristics and may be resonant at a harmonic of the M 2 tide.  相似文献   

11.
In this paper we use a numerical model to explore the relative dominance of two main processes in shore platform development: wave erosion; weathering due to wetting and drying. The modelling approach differs from previous work in several aspects, including: the way that it accounts for weathering arising from gradual surficial intertidal rock degradation; subtidal profile shape development; and the consideration of a broad erosion parameter space in which, at either end of the erosion spectrum, shore platform profiles are produced by waves or weathering alone. Results show that in micro‐tidal settings, wave erosion dominates the evolution of (i) shore platforms that become largely subtidal and (ii) sub‐horizontal shore platforms that have a receding seaward edge. Weathering processes dominate the evolution of sub‐horizontal shore platforms with a stable seaward edge. In contrast, sloping shore platforms in mega‐tidal settings are produced across the full range of the process‐dominance spectrum depending on the how the erosional efficacy of wave erosion and weathering are parameterized. Morphological feedbacks control the process‐dominance. In small tidal environments wave processes are strongly controlled by the presence/absence of an abrupt seaward edge, but this influence is much smaller in large tidal environments due to larger water depths particularly at high tides. In large tidal environments, similar shore platform profile geometries can be produced by either wave‐dominant or weathering‐dominant process regimes. Equifinality in shore platform development has been noted in other studies, but mainly in the context of smaller‐scale (centimetre to metre) erosion features. Here we draw attention to geomorphic equifinality at the scale of the shore platform itself. Progress requires a greater understanding of the actual mechanics of the process regimes operating on shore platforms. However, this paper makes a substantial contribution to the debate by identifying the physical conditions that allow clear statements about process dominance. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

13.
Cross-shore migratory behavior of nearshore sandbars is commonly studied with nearshore bathymetric-evolution models that represent underlying processes of hydrodynamics and sediment transport. These models, however, struggle to reproduce natural cross-shore sandbar behavior on timescales of a few days to weeks and have uncertain skill on longer scales of months to years. One particular concern for the use of models on prediction timescales that far exceed the timescale of the modeled processes is the exponential accumulation of errors in the nonlinear model equations. The relation between cross-shore sandbar migration, sandbar location and wave height has previously been demonstrated to be weakly nonlinear on timescales of several days, but it is unknown how this nonlinearity affects the predictability of long-term (months to years) cross-shore sandbar behavior. Here we study the role of nonlinearity in the predictability of sandbar behavior on timescales of a few days to several months with data-driven neural network models. Our analyses are based on over 5600 daily-observed cross-shore sandbar locations and daily-averaged wave forcings from the Gold Coast, Australia, and Hasaki, Japan. We find that neural network models are able to hindcast many aspects of cross-shore sandbar behavior, such as rapid offshore migration during storms, slower onshore return during quiet periods, seasonal cycles and annual to interannual offshore-directed trends. Although the relation between sandbar migration, sandbar location and wave height is nonlinear, sandbar behavior can be hindcasted accurately over the entire lifespan of the sandbars at the Gold Coast. Contrastingly, it is difficult to hindcast the long-term offshore-directed trends in sandbar behavior at Hasaki because of exponential accumulation of errors over time. Our results further reveal that during periods with low-wave conditions it becomes increasingly difficult to predict sandbar locations, while during high waves predictions become increasingly accurate.  相似文献   

14.
Water level records at two stations in the Guadalquivir Estuary (Spain), one near the estuary mouth (Bonanza) and one about 77 km upstream (Sevilla), have been analysed to study the amplification of the tide in the estuary. The tidal amplification factor shows interesting temporal variation, including a spring-neap variation, some extreme low values, and especially the anomalous behaviour that the amplification factor is larger during a number of periods. These variations are explained by data analysis combined with numerical and analytical modelling. The spring-neap variation is due to the quadratic relation between the bottom friction and the tidal flow velocity. The river flood events are the direct causes of the extreme low values of the amplification factor, and they trigger the non-linear interaction between the tidal flow and suspended sediment transport. The fluvial sediment input during a river flood causes high sediment concentration in the estuary, up to more than 10 g/l. This causes a reduction of the effective hydraulic drag, resulting in stronger tidal amplification in the estuary for a period after a river flood. After such an event the tidal amplification in the estuary does not always fall back to the same level as before the event, indicating that river flood events have significant influence on the long-term development of this estuary.  相似文献   

15.
The two-dimensional barotropic, hydrodynamic and transport model MOHID is applied to the Patos Lagoon system using a nested modelling approach to reproduce both the lagoon and estuary hydrodynamics. A new Lagrangian oil spill model is presented and used to simulate a hypothetical oil spill in the estuary. Hydrodynamic fields are validated and used to force the oil model. Results show that the hydrodynamics of this system is mainly controlled by the wind and freshwater discharge. The dispersion, concentration and thickness evolution of the oil in the first day after the spill is determined by the equilibrium between these two factors. The freshwater discharge is the major factor controlling the oil dispersion for discharges greater than 5000 m3 while the wind assumes control for lower discharge amounts. The results presented are a first step toward a coastal management tool for the Patos Lagoon.  相似文献   

16.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

17.
Although there have been studies on the tide in convergent bay (or estuary), the tide change in terms of phase speed, amplitude, and phase difference between elevation and tidal current from a coastal ocean to a convergent bay has not been clearly shown so far. This study systematically examines the change of tidal wave characteristics from the eastern Yellow Sea to the Asan Bay, a strongly convergent bay on the west coast of Korea, using observations and an analytical model. As the tidal wave propagates from the eastern Yellow Sea into the Asan Bay, the phase speed, amplitude, and phase difference between elevation and tidal current increase along the channel. Such a phenomenon represents a unique example of tide change from a coastal ocean to a convergent bay, indicating dominance of convergence over friction in the Asan Bay. Both analytically computed tidal amplitude and travelling time compare well with observations. In the Asan Bay, the influence of the reflected wave is only felt in the upper one fifth of the bay and is almost unperceivable in the rest of the bay. The analytical analyses presented in this paper are particularly useful for understanding the relative importance of channel convergence, bottom friction, and reflected wave on the tidal characteristics change along the channel and the proposed method could be applicable to other estuaries.  相似文献   

18.
The Dee Estuary, at the NW English–Welsh border, is a major asset, supporting: one of the largest wildlife habitats in Europe, industrial importance along the Welsh coastline and residential and recreational usage along the English coast. Understanding of the residual elevation is important to determine the total water levels that inundate intertidal banks, especially during storms. Whereas, improved knowledge of the 3D residual circulation is important in determining particle transport pathways to manage water quality and morphological change. Using mooring data obtained in February–March 2008, a 3D modelling system has been previously validated against in situ salinity, velocity, elevation and wave observations, to investigate the barotropic–baroclinic wave interaction within this estuary under full realistic forcing. The system consists of a coupled circulation-wave-turbulence model (POLCOMS-WAM-GOTM). Using this modelling system the contribution of different processes and their interactions to the monthly residuals in both elevation and circulation is now assessed. By studying a tidally dominated estuary under wave influence, it is found that baroclinicity induced by a weak river flow has greater importance in generating a residual circulation than the waves, even at the estuary mouth. Although the monthly residual circulation is dominated by tidal and baroclinic processes, the residual estuarine surface elevation is primarily influenced by the seasonal external forcing to the region, with secondary influence from the local wind conditions. During storm conditions, 3D radiation stress becomes important for both elevation and circulation at the event scale but is found here to have little impact over monthly time scales.  相似文献   

19.
Abundance and biochemical composition of organic materials in sediments of the estuaries of Mundaka and Bilbao (SE Bay of Biscay) were analysed to assess the effect of organic wastes released to these systems. Organic and labile contents were higher in the sediments of Bilbao, denoting organic enrichment with poorly decomposed materials by human dumping. Spatially, organic matter distribution skewed seaward in Bilbao and upward in Mundaka, in agreement with the location of major point sources of sewage. Labile material, proteins and protein:carbohydrate ratio showed upward increases in both estuaries, attributed to the oxygen restrictive conditions to decompose organic materials. Vertical distribution of organic components into sediments reflected the history of human activities. In Bilbao, the significant reduction of organic and labile compounds, and the decrease of protein:carbohydrate values in top layers seem a result of recent remedial actions to reduce urban sewage inputs and improve environmental conditions. Higher contributions of proteins and lipids were associated with anthropogenic materials, and higher contributions of carbohydrates with autochthonous materials. High protein:carbohydrate values indicate poorly decomposed materials of human origin. The close relationship of carbohydrates with chloropigments in Mundaka suggests that phytobenthic populations and derived detritus contributed to a greater extent to the organic fraction in this estuary.  相似文献   

20.
Numerical modelling of morphodynamics—Vilaine Estuary   总被引:1,自引:0,他引:1  
The main objective of this paper is to develop a method to simulate long-term morphodynamics of estuaries dominated by fine sediments, which are subject to both tidal flow and meteorologically induced variations in freshwater run-off and wave conditions. The method is tested on the Vilaine Estuary located in South Brittany, France. The estuary is subject to a meso–macrotidal regime. The semi-diurnal tidal range varies from around 2.5 to 5 m at neap and spring, respectively. The freshwater input is controlled by a dam located approximately 8 km from the mouth of the estuary. Sediments are characterised as mostly fines, but more sandy areas are also found. The morphology of the estuary is highly influenced by the dam. It is very dynamic and changes in a complicated manner with the run-off from the dam, the tide and the wave forcing at the mouth of the estuary. Extensive hydrodynamic and sediment field data have been collected in the past and provide a solid scientific basis for studying the estuary. Based on a conceptual understanding of the morphodynamics, a numerical morphological model with coupled hydrodynamic, surface wave and sediment transport models is formulated. The numerical models are calibrated to reproduce sediment concentrations, tidal flat altimetry and overall sediment fluxes. Scaling factors are applied to a reference year to form quasi-realistic hydrodynamic forcing and river run-off, which allow for the simulations to be extended to other years. The simulation results are compared with observed bathymetric changes in the estuary during the period 1998–2005. The models and scaling factors are applied to predict the morphological development over a time scale of up to 10 years. The influence of the initial conditions and the sequence of external hydrodynamic forcing, with respect to the morphodynamic response of the estuary, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号