首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Quaternary Science Reviews》2007,26(7-8):954-957
The world's definite southernmost woolly mammoth record is a molar from Ji’nan (around 36°N), Shandong Province, China. AMS 14C dating of the specimen, gave a conventional 14C age of 33,150±250 BP. The period of 40–30 ka BP corresponds to the later phase of the Marine Oxygen Isotope Stage 3 (MIS 3a), recognized as the global interstadial of the last glacial period. However, it is known that the winter monsoon strengthened in Asia during the period 35–33 ka BP, and the age of the woolly mammoth specimen from Ji’nan corresponds to that age. The specimen suggests that this area became cold and dry in 33 ka BP, and grassland or open forest, suitable habitat for woolly mammoths, developed during this short time span. This age is similar to the age of the southernmost woolly mammoth record in Europe, therefore supporting a hypothesis by Porter and An [1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305–308] that an important component of Chinese palaeoclimates may be linked to changes in North Atlantic oceanic conditions.  相似文献   

2.
《Quaternary Science Reviews》2007,26(11-12):1610-1620
The primary objective of the present study is to identify major phases of alluviation in the Indian region since the abrupt Deglacial intensification of the monsoon (∼15 cal ka BP) on the basis of analysis of 68 radiocarbon dates from two major hydro-geomorphic regions of India: the Central Ganga Basin (CGB) and the Deccan Peninsula (DP). The recognition of main phases of alluviation and incision has been achieved by evaluating the temporal distribution and clustering of the radiocarbon dates from alluvial sequences. The clusters were detected on the basis of the interpretation of the summed probability distribution plots derived by using OxCal version 4.0.1 and CALPAL (version May 2006) software packages.The summed probability plots reveal that periods of alluviation in the CGB, represented by three clusters (13.9–12.3, 11.9–11.2 and 9.8–9.0 cal ka BP) occur roughly before the onset of Early Holocene monsoon optimum phase. Two other clusters occur in the intervals 3.6–2.8 and 1.1–0.9 cal ka BP. The peak monsoon period generally lacks clusters of radiocarbon dates implying fluvial erosion and channel incision. This period also shows clustering of radiocarbon dates of the abandoned channels. In comparison, 14C dates from DP alluvial units form clusters at 16.4–14, 12.8–11.2, 10.8–8.9, 8.1–6.7 and 5.1–3.9 cal ka BP, indicating an association with the Deglacial–Early Holocene humid phase. Alluviation in the DP appears to have continued, more or less, uninterrupted till the middle of the Holocene epoch. The beginning and end of the discernible gap in the radiocarbon dates of CGB (9.0–3.6 cal ka) broadly corresponds with the two well-established short-term events of the Holocene, 8.2 and 4.2 ka cal BP. In comparison, the prominent gap of DP radiocarbon dates (3.9–2.1 ka cal BP) approximately begins with the 4.2 ka cal BP short-term event (onset of aridity) and ends with the 2.0 ka cal BP enhanced monsoon event.Notwithstanding the inter-regional differences in the fluvio–sedimentary response in the India region, the clusters of radiocarbon dates indicate that the century to millennium scale variations in fluvial activity in the Indian subcontinent were intimately linked to long-term fluctuations in the monsoon strength during the Late Quaternary.  相似文献   

3.
The Norwegian Channel Ice Stream (NCIS) is one the defining features of the Fennoscandian icesheet. Still little is known of the detailed dynamics of this ice stream in relation to regional changes in ice cover, paleoceanographic and climatic changes. Sedimentological data from core MD99-2283 in combination with seismic data allow a detailed chronological reconstruction of the outbuilding of the margin and the ice extent in southern Scandinavia through the last 150 ka. An integrated stratigraphy of the margin is presented and compared to the glacial history. Changes in the regional ice cover are reflected in the accumulation rates, the clay mineralogy, the coarse chalk fraction and the number of IRD >2 mm in core MD99-2283, while the sedimentation on the North Sea Fan as derived from seismic data provides direct evidence for the glacial activity at the shelf edge. Tentative evidence was found for two Early Weichselian glacial advances in southern Scandinavia and possibly Scotland at around 110 and 80 ka BP. From 42 cal ka BP the ice cover expanded in southern Fennoscandia and led to increased deposition on the margin and the occurrence of local melt water outbursts. Significantly increased accumulation rates, coarse chalk, local meltwater output and smectite occur during the ice expansion in the North Sea from around 34 cal ka BP. The main outbuilding phase of the NSF during the last glacial cycle occurred after 30 cal ka BP. From around 24 cal ka BP the NCIS became highly active and advanced at least three times prior to the final retreat from the shelf edge around 19.0 cal ka BP.  相似文献   

4.
Victoria Island lies at the north-western limit of the former North American (Laurentide) Ice Sheet in the Canadian Arctic Archipelago and displays numerous cross-cutting glacial lineations. Previous work suggests that several ice streams operated in this region during the last (Wisconsinan) glaciation and played a major role in ice sheet dynamics and the delivery of icebergs into the Arctic Ocean. This paper produces the first detailed synthesis of their behaviour from the Last Glacial Maximum through to deglaciation (~21–9.5 cal ka BP) based on new mapping and a previously published radiocarbon-constrained ice sheet margin chronology. Over 70 discrete ice flow events (flow-sets) are ‘fitted’ to the ice margin configuration to allow identification of several ice streams ranging in size from large and long-lived (thousands of years) to much smaller and short-lived (hundreds of years). The reconstruction depicts major ice streams in M'Clure Strait and Amundsen Gulf which underwent relatively rapid retreat from the continental shelf edge at some time between ~15.2 and 14.1 cal ka BP: a period which encompasses climatic warming and rapid sea level rise (meltwater pulse-1a). Following this, overall retreat was slower and the ice streams exhibited asynchronous behaviour. The Amundsen Gulf Ice Stream continued to operate during ice margin retreat, whereas the M'Clure Strait Ice Stream ceased operating and was replaced by an ice divide within ~1000 years. This ice divide was subsequently obliterated by another short-lived phase of ice streaming in M'Clintock Channel ~13 cal ka BP. The timing of this large ice discharge event coincides with the onset of the Younger Dryas. Subsequently, a minor ice divide developed once again in M'Clintock Channel, before final deglaciation of the island shortly after 9.5 cal ka BP. It is concluded that large ice streams at the NW margin of the Laurentide Ice Sheet, equivalent in size to the Hudson Strait Ice Stream, underwent major changes during deglaciation, resulting in punctuated delivery of icebergs into the Arctic Ocean. Published radiocarbon dates constrain this punctuated delivery, as far as is possible within the limits imposed by their precision, and we note their coincidence with pulses of meltwater delivery inferred from numerical modelling and ocean sediment cores.  相似文献   

5.
The seaboard of western Scotland is a classic fjord landscape formed by glaciation over at least the last 0.5 Ma. We examine the glacial geology preserved in the fjords (or sea lochs) of the Summer Isles region of NW Scotland using high-resolution seismic data, multibeam swath bathymetry, seabed sediment cores, digital terrain models, aerial photographs, and field investigations. Detailed analyses include seismic facies and lithofacies interpretations; sedimentological and palaeoenvironmental analyses; and radiocarbon dating of selected microfauna. Our results indicate that the Pleistocene sediments of the Summer Isles region, on- and offshore, can be subdivided into several lithostratigraphic formations on the basis of seismic character, geomorphology and sedimentology. These are: subglacial tills; ice-distal and glacimarine facies; ice-proximal and ice-contact facies; moraine assemblages; and Holocene basin fill. The submarine landscape is also notable for its large-scale mass-movement events – the result of glaciodynamic, paraglacial or seismotectonic processes. Radiocarbon dating of marine shells indicate that deglaciation of this part of NW Scotland was ongoing between 14 and 13 ka BP – during the Lateglacial Interstadial (Greenland Interstadial 1) – consistent with cosmogenic surface-exposure ages from previous studies. A sequence of numerous seafloor moraine ridges charts oscillatory retreat of the last ice sheet from a buoyant calving margin in The Minch to a firmly grounded margin amongst the Summer Isles in the early part of Lateglacial Interstadial (GI-1) (pre-14 ka BP). Subsequent, punctuated, frontal retreat of the ice mass occurred in the following ~1000 years, during which time ice-cap outlet glaciers became topographically confined and restricted to the fjords. A late-stage readvance of glaciers into the inner fjords occurred soon after 13 ka BP, which calls into question the accepted limits of ice extent during the Younger Dryas Stadial (Greenland Stadial 1). We examine the wider implications of our chronostratigraphic model, discussing the implications for British Ice Sheet deglaciation, Lateglacial climate change, and the style and rates of fjord sedimentation.  相似文献   

6.
Digital elevation models of the area around the Solway Lowlands reveal complex subglacial bedform imprints relating the central sector of the LGM British and Irish Ice Sheet. Drumlin and lineation mapping in four case studies show that glacier flow directions switched significantly through time. These are summarised in four major flow phases in the region: Phase I flow was from a dominant Scottish dispersal centre, which transported Criffel granite erratics to the Eden Valley and forced Lake District ice eastwards over the Pennines at Stainmore; Phase II involved easterly flow of Lake District and Scottish ice through the Tyne Gap and Stainmore Gap with an ice divide located over the Solway Firth; Phase III was a dominant westerly flow from upland dispersal centres into the Solway lowlands and along the Solway Firth due to draw down of ice into the Irish Sea basin; Phase IV was characterised by unconstrained advance of Scottish ice across the Solway Firth. Forcing of a numerical model of ice sheet inception and decay by the Greenland ice core record facilitates an assessment of the potential for rapid ice flow directional switching during one glacial cycle. The model indicates that, after fluctuations of smaller radially flowing ice caps prior to 30 ka BP, the ice sheet grows to produce an elongate, triangular-shaped dome over NW England and SW Scotland at the LGM at 19.5 ka BP. Recession after 18.5 ka BP displays a complex pattern of significant ice flow directional switches over relatively short timescales, complementing the geomorphologically-based assessments of palaeo-ice dynamics. The palaeoglaciological implications of this combined geomorphic and modelling approach are that: (a) the central sector of the BIIS was as a major dispersal centre for only ca 2.5 ka after the LGM; (b) the ice sheet had no real steady state and comprised constantly migrating dispersal centres and ice divides; (c) subglacial streamlining of flow sets was completed over short phases of fast flow activity, with some flow reversals taking place in less than 300 years.  相似文献   

7.
The concept that Rannoch Moor, the centre of the Younger Dryas (YD), West Highland Icefield, was deglaciated as early as 12.5 cal ka BP is discussed in the light of radiocarbon dates and varve sequences from outlet glaciers of this icefield, and climate change during the YD. The maximum positions of three YD glaciers were reached after 11.6–11.8 cal ka BP (Lomond), and after 11.8–11.9 cal ka BP (Spean and Treig) indicating that ice remained on Rannoch Moor until long after c.12.5 cal ka BP, and possibly until the YD/Holocene transition at c.11.7 cal ka BP. Further, the Spean glacier dammed a proglacial lake in Lochaber for at least 495 varve years over a period that included the deposition of the Vedde Ash (c.12.1 cal ka BP) and a late YD ash layer (c. 11.7–11.2 cal ka BP), a thesis at variance with supposed early YD deglaciation. Recent examination of this issue using 10Be exposure age determinations from Rannoch Moor is equivocal. In view of the presence of hard water algae at the sampling site on Rannoch Moor it is recommended that the ‘early’ 14C dates from Rannoch Moor need to be further reassessed using chronological constraints provided by dated microtephra, and a collaborative radiocarbon dating programme.  相似文献   

8.
We present chironomid and pollen records from the Huelmo site (~41°30′S), NW Patagonia, to examine in detail the timing and structure of climate changes during the Last Glacial Termination in the southern mid-latitudes. The chironomid record has the highest temporal and taxonomic resolution for this critical interval, and constitutes the first account of midge faunas at the culmination of the Last Glacial Maximum (LGM) for the region. The chironomid record suggests cold and wet conditions during the LGM, followed by deglacial warming between 17.6 and 16.8 cal kyr BP. Relatively warm conditions prevailed between ~15–14 cal kyr BP, followed by a reversal in trend with cooling pulses at ~14 and 13.5 cal kyr BP, and warming at the beginning of the Holocene. Cool-temperate conditions prevailed during the Huelmo Mascardi Cold Reversal (HMCR) which, according to chironomid data, exhibits a wet phase (13.5–12.8 cal kyr BP) followed by a conspicuous drier phase (12.8–11.5 cal kyr BP). The chironomid and pollen records from the Huelmo site indicate step-wise deglacial warming beginning at 17.6 cal kyr BP, in agreement with other paleoclimate records from NW Patagonia and isotopic signals from Antarctic ice cores. Peak warmth during the Last Glacial Termination was achieved by ~14.5 cal kyr BP, followed by a cooling trend that commenced during the Antarctic Cold Reversal, which later intensified and persisted during the HMCR (13.5–11.5 cal kyr BP). We observe a shift toward drier conditions at ~12.8 cal kyr BP superimposed upon the HMCR, coeval with intense fire activity and vegetation disturbance during Younger Dryas time.  相似文献   

9.
《Quaternary Research》2014,81(3):445-451
Some scholars have argued that the formation and outburst of an ancient dammed lake in the Jishi Gorge at ca. 3700 cal yr BP resulted in the destruction of Lajia, the site of a famous prehistoric disaster in the Guanting Basin, upper Yellow River valley, China. However, the cause of the dammed lake and the exact age of the dam breaching are still debated. We investigated ancient landslides and evidence for the dammed lake in the Jishi Gorge, including dating of soil from the shear zone of an ancient landslide, sediments of the ancient dammed lake, and loess above lacustrine sediments using radiocarbon and optically stimulated luminescence (OSL) dating methods. Six radiocarbon dates and two OSL dates suggested that the ancient landslides and dammed lake events in the Jishi Gorge probably occurred around 8100 cal yr BP, and the ancient dammed lake was breached between 6780 cal yr BP and 5750 cal yr BP. Hence, the outburst of the ancient dammed lake in the Jishi Gorge was unrelated to the ruin of the Lajia site, but likely resulted in flood disasters in the Guanting Basin around 6500 cal yr BP.  相似文献   

10.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

11.
The Late Pleistocene to Middle Holocene African Humid Period (AHP) was characterized by dramatic hydrologic fluctuations in the tropics. A better knowledge of the timing, spatial extent, and magnitude of these hydrological fluctuations is essential to decipher the climate-forcing mechanisms that controlled them. The Suguta Valley (2°N, northern Kenya Rift) has recorded extreme environmental changes during the AHP. Extensive outcrops of lacustrine sediments, ubiquitous wave-cut notches, shorelines, and broad terrace treads along the valley margins are the vestiges of Lake Suguta, which once filled an 80 km long and 20 km wide volcano–tectonic depression. Lake Suguta was deep between 16.5 and 8.5 cal ka BP. During its maximum highstand, it attained a water depth of ca 300 m, a surface area of ca 2150 km2, and a volume of ca 390 km3. The spatial distribution of lake sediments, the elevation of palaeo-shorelines, and other geomorphic evidences suggest that palaeo-Lake Suguta had an overflow towards the Turkana basin to the north. After 8.5 cal ka BP, Lake Suguta abruptly disappeared. A comparison of the Lake Suguta water-level curve with other reconstructed water levels from the northern part of the East African Rift System shows that local insolation, which is dominated by precessional cycles, may have controlled the timing of lake highstands in this region. Our data show that changes of lake levels close to the Equator seem to be driven by fluctuations of spring insolation, while fluctuations north of the Equator are apparently related to variations in summer insolation. However, since these inferred timings of lake-level changes are mostly based on the radiocarbon dating of carbonate shells, which may have been affected by a local age reservoir, alternative dating methods are needed to support this regional synthesis. Between 12.7 and 11.8 cal ka BP, approximately during the Northern Hemisphere high-latitude Younger Dryas, the water level of Lake Suguta fell by ca 50 m, suggesting that remote influences also affected local hydrology.  相似文献   

12.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

13.
《Quaternary Science Reviews》2007,26(1-2):142-154
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP).The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.  相似文献   

14.
Kuzmin, Y. V. 2009: Extinction of the woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: Review of chronological and environmental issues. Boreas, 10.1111/j.1502‐3885.2009.00122.x. ISSN 0300‐9483. The current evidence for date and environmental preferences of the extinction of two middle–late Pleistocene megafaunal species, the woolly mammoth (Mammuthus primigenius Blum.) and woolly rhinoceros (Coelodonta antiquitatis Blum.), is presented in this review. It is suggested that extinction of these large herbivores in Eurasia was closely related to landscape changes near the Pleistocene–Holocene boundary (c. 12 000–9000 uncalibrated radiocarbon years ago, yr BP), mainly involving the widespread forest formations in the temperate and arctic regions of northern Eurasia and the loss of grasslands crucial to the existence of woolly mammoth and rhinoceros. However, some woolly mammoth populations survived well into the Holocene (up to c. 3700 yr BP), showing that the process of final extinction was fairly complex, with delays in some regions of up to several millennia. The possible role of Palaeolithic humans in the extinction of Late Pleistocene megafauna is also considered.  相似文献   

15.
《Quaternary Science Reviews》2007,26(13-14):1736-1758
This paper presents a high-resolution lake-level record for the Holocene at Lake Accesa (Tuscany, north-central Italy) based on a range of sedimentological techniques validated in previous studies, with a chronology derived from 43 radiocarbon dates and four tephra layers. It gives evidence of centennial-scale fluctuations with major highstands at ca 11 500, 11 100, 10 200, 9400, 8200, 7300, 6200, 5700–5200, 4850, 4200, 3400, 2600, 1200 and 400 cal BP. Except for the Early Holocene until ca 10 500 cal BP, this pattern of hydrological changes appears to be in agreement with the regional pattern established for west-central Europe. Correlations with the Preboreal oscillation and the 8.2 ka event as well as with the atmospheric 14C residual series suggest that lake-level fluctuations developed at Accesa in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity. For the period after 4500 cal BP, correlations with other palaeohydrological records from central Italy indicate that lake-level changes reconstructed at Accesa were mainly driven by climatic variations while anthropic activities and local geomorphological factors only played a secondary role. The Accesa lake-level record also highlights millennial-scale variations with a maximal lowstand at ca 9200–7700 cal BP contemporaneous with Sapropel event 1 in the Mediterranean. It was followed by generally higher lake-level conditions. This appears to be the opposite of that observed in Sicily (southern Italy) where a lake-level maximum developed at ca 9000–8200 cal BP and was followed by a general trend towards aridification. These opposite patterns were interpreted as contrasting hydrological responses to orbitally induced changes in summer insolation. This interpretation has to be tested by further lake-level studies in the central Mediterranean region. Finally, correlations between major lowstands and periods of maximal representation of Quercus ilex point to convergences between climate oscillations and Holocene vegetation history in the Accesa region. However, the maximal representation of Abies during the first half of the Holocene, including a time window where lake level reached a minimal level, suggests a more subtle impact of seasonality processes.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

17.
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.  相似文献   

18.
A core, recovered from a water depth of 53 m in Loch Assynt, North-West Scotland, has yielded a 9 m sequence comprising two distinct units, an upper, organic-rich unit (Unit I, ca. 6 m) overlying a sequence of laminated clays, silts and sands (Unit II, ca. 3 m). The upper unit is essentially Holocene in age based upon three bulk AMS radiocarbon dates while a fourth radiocarbon date from Unit II confirms a late-glacial age for that interval and supports a broadly linear age–depth relationship. Distinct variations in the magnetic susceptibility record of the lower unit can be visually correlated to major changes in the Greenland ice core (GISP2), this together with pollen evidence supports the radiocarbon dating suggesting an age of approximately 11,000 to around 17,000 cal. BP for Unit II, with evidence for the Younger Dryas (Loch Lomond) stadial and the Bolling–Allerød climatic phases. Variations in the magnetic susceptibility record of the late-glacial sediments are thought to relate to climatically driven changes in soil cover and erosion rates. The multiproxy record from Loch Assynt indicates relatively continuous, sub-aqueous sedimentation during the last ~17,000 years, providing an approximate age for the initiation of modern Loch Assynt and supporting recent dates of moraine retreat lines in the Loanan Valley from about 14–15 ka BP. Pollen and chironomid sampling provides further insights to the history of this relatively deep water body and compliment existing high-resolution palaeo-precipitation records for the mid to late Holocene interval from speleothem archives within the loch catchment.  相似文献   

19.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

20.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号