首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The continental margin offshore of western Ireland offers an opportunity to study the effects of glacial forcing on the morphology and sediment architecture of a mid-latitude margin. High resolution multibeam bathymetry and backscatter data, combined with shallow seismic and TOBI deep-towed side-scan sonar profiles, provide the basis for this study and allow a detailed geomorphological interpretation of the northwest Irish continental margin. Several features, including submarine mass failures, canyon systems and escarpments, are identified in the Rockall Trough for the first time. A new physiographic classification of the Irish margin is proposed and linked to the impact of glaciations along the margin. Correlation of the position and dimensions of moraines on the continental shelf with the level of canyon evolution suggests that the sediment and meltwater delivered by the British–Irish Ice Sheet played a fundamental role in shaping the margin including the upslope development of some of the canyon systems. The glacial influence is also suggested by the variable extent and backscatter signal of sedimentary lobes associated with the canyons. These lobes provide an indirect measurement of the amount of glaciogenic sediment delivered by the ice sheet into the Rockall Trough during the last glacial maximum. None of the sedimentary lobes demonstrates notable relief, indicating that the amount of glaciogenic sediment delivered by the British–Irish Ice Sheet into the Rockall Trough was limited. Their southward disappearance suggests a more restricted BIIS, which did not reach the shelf edge south of 54°23′ N. The various slope styles observed on the Irish margin represent snapshots of the progressive stages of slope development for a glacially-influenced passive margin and may provide a predictive model for the evolution of other such margins.  相似文献   

2.
Based on new multibeam bathymetric data, seismic-reflection profiles and side-scan sonar images, a great number of submarine failures of various types and sizes was identified along the northern margin of the Ligurian Basin and characterized with 3 distinct end-members concerning their location on the margin, sedimentary processes and possible triggering mechanisms. They include superficial landslides mainly located in the vicinity of the main mountain-supplied rivers and on the inner walls of canyons (typically smaller that 108 m3 in volume: Type 1), deep scars 100?C500 m high along the base of the continental slope (Type 2), and large-scale scars and Mass Transport Deposits (MTDs) affecting the upper part of the slope (Type 3 failures). The MTDs are located in different environmental contexts of the margin, including the deep Var Sedimentary Ridge (VSR) and the upper part of the continental slope in the Gulf of Genova (Finale Slide and Portofino Slide), with volumes of missing sediment reaching up to 1.5 × 109 m3. High sedimentation rates related to hyperpycnal flows, faults and earthquake activity, together with sea-level fluctuations are the main factors invoked to explain the distribution and sizes of these different failure types.  相似文献   

3.
The present paper provides an overview of glacial related seabed features and sedimentary sequences found along the formerly glaciated NW European margin and compare it with those found on contemporary glaciated margins from both the Southern and Northern Hemispheres. A brief review of the seabed physiography and strata architecture of the margins under consideration is followed by comparison of the most relevant similarities and differences. Comparison of the present-day bathymetric setting of both former and contemporary glaciated margins reveals no clear link to the effect of neither ice sheet or sediment load. Three different types of glacially eroded shelf transverse troughs have been identified, while marginal troughs seem connected to similar geological settings everywhere. Beyond the shelf edge interaction between downslope and alongslope processes has occurred resulting, amongst others, in the formation of large sedimentary mounds on the rise. More frequent large-scale mass wasting occurs on the former glaciated NW European margin than the Greenland and Antarctic margins in the latest Neogene to recent times. A two-stage evolution of the shelf prograding wedges is observed on all margins under consideration, which may reflect a general development of an ice cover from an initial phase of non- to restricted glaciation, evolving to a mature stage of expansive glaciation.  相似文献   

4.
《Marine Geology》2001,172(3-4):265-285
Studies of latest Quaternary continental slope sediments at two localities on the east Australian margin have revealed markedly different responses to late Quaternary sea level fluctuations. Offshore of Noosa, in the sub-tropics, the sediment is predominantly a mixture of fine metastable carbonate, siliciclastic material, and pelagic carbonate. Important features of the stratigraphy include a siliciclastic-dominated facies deposited relatively slowly during the last glacial lowstand (sedimentation rate ≤8 cm/ka), and a calcareous facies, rich in metastable carbonate, deposited more rapidly during the late post-glacial transgression (sedimentation rates 15–24 cm/ka). Highstand and transgressive sedimentation rates are greater than lowstand rates by a factor of 2.5–6 due to increased shelf carbonate productivity after flooding of the mid-shelf. Off Sydney, in temperate latitudes, continental slope sediment is largely a mixture of fine siliciclastic material and pelagic carbonate. Mean sedimentation rates range from 2 to 5 cm/ka over the last four oxygen isotope stages, with mean glacial/interstadial rates higher than Holocene rates by a factor of ∼1.36. This largely reflects the transfer of siliciclastic mud from the shelf to the slope during sea level regression. In both localities, facies changes on the slope are not related to specific sea level states (e.g. lowstand facies, transgressive facies, etc.), but reflect instead the interaction of changing sea level with shelf morphology.  相似文献   

5.
Multichannel seismic reflection data from the Cosmonaut Sea margin of East Antarctica have been interpreted in terms of depositional processes in the continental slope and rise area. A major sediment lens is present below the upper continental rise along the entire Cosmonaut Sea margin. The lens probably consists of sediments supplied from the shelf and slope, being constantly reworked by westward flowing bottom currents, which redeposited the sediments into a large scale drift deposit prior to the main glaciogenic input along the margin. High-relief semicircular or elongated depositional structures are also found on the upper continental rise stratigraphically above the regional sediment lens, and were deposited by the combined influence of downslope and alongslope sediment transport. On the lower continental rise, large-scale sediment bodies extend perpendicular to the continental margin and were deposited as a result of downslope turbidity transport and westward flowing bottom currents after initiation of glacigenic input to the slope and rise. We compare the seismostratigraphic signatures along the continental margin segments of the adjacent Riiser Larsen Sea, the Weddell Sea and the Prydz Bay/Cooperation Sea, focussing on indications that may be interpreted as a preglacial-glaciomarine transition in the depositional environment. We suggest that earliest glaciogenic input to the continental slope and rise occurred in the Prydz Bay and possibly in the Weddell Sea. At a later stage, an intensification of the oceanic circulation pattern occurred, resulting in the deposition of the regional plastered drift deposit along the Cosmonaut Sea margin, as well as the initiation of large drift deposits in the Cooperation Sea. At an even later stage, possibly in the middle Miocene, glacial advances across the continental shelf were initiated along the Cosmonaut Sea and the Riiser Larsen Sea continental margins.  相似文献   

6.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

7.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

8.
Abstract

As part of a National Oceanic and Atmospheric Administration (NOAA) program to understand bottom and nearbottom processes on the continental margin, the continental slope seaward of the coast of Delaware, just east of the Baltimore Canyon Trough, and northeast of Wilmington Canyon was studied in detail. With a suite of geophysical data, a 7.5 × 13.0‐km portion of the continental slope was surveyed and found to be composed of a large submarine slide, approximately 11 km 3 in volume. The slide varies from 50 to 300 m in thickness and is believed to be composed of Pleistocene Age sediments. The internal structure of the continental slope can be seen on the seismic reflection profiles, as well as the readily identifiable continuous slip surface. Pliocene to Cretaceous horizons comprise the continental margin with Pliocene to Eocene horizons truncated at the slip surface. Sediment failure occurred on the slope between the late Tertriary erosion surface, which shaped the continental margin, and the overlying Quaternary sediments. A mechanism suggested to have contributed to the sediment failure is a late Pleistocene lower stand of sea level. Creep of surficial sediments is believed to be active on the surface of the submarine slide, indicating present‐day instability.  相似文献   

9.
Earth’s climate during the Proterozoic Eon was marked by major glacial events with evidence for large continental ice sheets on many cratons, and with sedimentological data indicating that glaciers had extended to sea-level. This paper emphasizes the sedimentological and sequence stratigraphic responses to glaciations and evaluates the major driving forces of glaciations during the Precambrian. First- and second-order sequences are recognized related to continental-scale fragmentation and formation of marine rift basins wherein sedimentary rocks indicate glacial influences and pronounced tectonic-climatic linkages. Coarse syn-rift deposits are typically characterized by mass flow diamictites and conglomerates. It is important to undertake sedimentological facies and sequence stratigraphic analysis of these syn-rift and capping passive margin sequences, as well as of slope turbidite deposits which formed if enhanced subsidence of the basins was occurring. More generally, latitude and syn-rift tectonic uplift can cause formation of glacial ice and enhance distinctive glacial influences on extensional basin sedimentation, thus supporting a causal relationship between thermal subsidence and the formation of glacier ice on inland areas. During the Precambrian, however, it is suggested that long-lived marine-terminated glaciers also situated at low paleolatitudes, were related to an extensional tectonic setting. In such settings, glacial deposits associated with sedimentary sequences of distinctively different origin, e.g. carbonate and chemically mature siliciclastic sequences, can well be used to detect the prominent sequence boundaries to verify depositional systems tracts. Internal sediment stacking patterns in sequences are indicative of dynamic processes along glaciated continental margins and without always having the need for global synchroneity. In glacially influenced rift basins and continental margins it is important to recognize the sequence boundaries of significant subaerial unconformities and their correlative conformities. A sequence boundary is a chronostratigraphically significant surface always produced as a consequence of a change in relative sea-level. These can then be well related to initiation and decay of glaciations, however on-land glacial deposits in a very few cases are prevented from later erosion. Attenuation of continental crust during rifting and breakup of the continent raises relative sea-level and also many of the shallow intra-cratonic basins subsided below sea-level, in favourable conditions being affected by major continental glaciations.Paleoproterozoic and Neoproterozoic glacial deposits are known in North and South America, South Africa, India, Western Australia and Fennoscandia. Against this background, continental-scale to global glaciations in the Precambrian appear to be possible, however views on the causes and timing of these glaciations, as well as on planetary extent of ice cover are still contradictory. There is a need to continue detailed sedimentological studies of pre-glacial and post-glacial deposits as well as to interpret syn-glacial lithofacies for their inferred transportation and depositional processes. Pre-glacial deposits, especially, should provide a new target to help us understand the processes that initiated these Precambrian glaciations. The sequence stratigraphic approach with understanding of the stacking pattern of depositional systems could prevent oversimplification and use of just single events to explain the complexity of evolution of glacially influenced Precambrian continental margin sediments.  相似文献   

10.
Pleistocene glacial history of the NW European continental margin   总被引:3,自引:3,他引:3  
In this paper new and previously published data on the Pleistocene glacial impact on the NW European margin from Ireland to Svalbard (between c. 48°N–80°N) are compiled. The morphology of the glaciated part of the European margin strongly reflects repeated occurrence of fast-moving ice streams, creating numerous glacial troughs/channels that are separated by shallow bank areas. End-moraines have been identified at several locations on the shelf, suggesting shelf-edge glaciation along the major part of the margin during the Last Glacial Maximum. Deposition of stacked units of glacigenic debris flows on the continental slope form fans at a number of locations from 55°N and northwards, whereas the margin to the south of this is characterised by the presence of submarine canyons. Glaciation curves, based primarily on information from the glacial fed fan systems, that depict the Pleistocene trends in extent of glaciations along the margin have been compiled. These curves suggest that extensive shelf glaciations started around Svalbard at 1.6–1.3 Ma, while repeated periods of shelf-edge glaciations on the UK margin started with MIS 12 (c. 0.45 Ma). The available evidence for MIS 2 suggest that shelf-edge glaciation for the whole margin was reached between c. 28 and 22 14C ka BP and maximum positions after this were more limited in some regions (North Sea and Lofoten). The last glacial advance on the margin has been dated to 15–13.5 14C ka BP, and by c. 13 14C ka BP the shelf areas were completely deglaciated. The Younger Dryas (Loch Lomond) advance reached the coastal areas in only a few regions.  相似文献   

11.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   

12.
The depositional characters of densely dated turbidite successions originating from the southwestern margin of the Ulleung Basin reveal changes in high-resolution frequency, failing areas, and relative volumes of slope failures over the past 29.4 cal. ka. Between 29.4 and 19.1 cal. ka B.P., various thin- to very thick-bedded turbidites accumulated at an average recurrence interval of ca. 605 years. After 19.1 cal. ka B.P., turbidites were deposited with an average recurrence interval of 3,183 years, and their thickness abruptly decreased upward. These features suggest that various-scale slope failures occurred frequently during the eustatic lowering of sea level, and the frequency and relative volumes of slope failures suddenly decreased after sea level began to rise. When sea level was lowest (20.0–19.1 cal. ka B.P.), successive stacks of very thick turbidites can most likely be ascribed to larger-volume mass failures. An upward change from muddy to sandy turbidites around 21.4 cal. ka B.P. suggests that the failing areas retrograded from the muddy upper-middle slope to the sandy uppermost slope when sea level was nearly at its lowest. Based on these findings together with published evidence, frequent mass failures between 29.4 and 19.1 cal. ka B.P. were plausibly triggered by earthquakes, in combination with reduced hydrostatic pressure that promoted gas-hydrate dissolution during the eustatic lowering of sea level. These data on the frequency, scale, failing areas, and triggering causes of slope failures along the southwestern margin over the past 29.4 cal. ka, not documented in earlier studies, provide invaluable information to better understand the basin-scale characters and occurrences of latest Quaternary slope failures in the Ulleung Basin.  相似文献   

13.
The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5–1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950–1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.  相似文献   

14.
The stable continental margin of northeastern Brazil is unusually narrow, probably because of the small size and tropical character of the drainage basins of the hinterland, and correspondingly low rates of land erosion and marine sedimentation. The continental shelf, which is mainly a marine erosion surface, is also remarkably shallow, either because of upwarping or, more probably, because of the ineffectiveness of Pleistocene marine erosional processes on steeply sloping continental margins. Sediment accumulation is confined to the Sāo Francisco delta, seaward of which are fossil (?) lagoonal deposits, and to a poorly developed nearshore sand prism.The margin formed by seaward progradation of sediment on a subsiding basement, but the present morphology of the continental slope reflects chiefly Pleistocene canyon cutting and mass gravitational movements of sediment, which have exposed older strata in the upper slope. Beneath the continental slope is a magnetic anomaly (like the slope anomaly off the eastern U.S.A.), probably caused by a deeply buried dike of oceanic basalt, and apparently associated with a buried ridge which may have formed the seaward margin of the Sergipe—Alagoas Basin during the early history of the South Atlantic. Similar structures may be typical of the narrow easternmost part of the Brazilian margin.  相似文献   

15.
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.  相似文献   

16.
秦琳  万世明 《海洋与湖沼》2020,51(4):875-888
大陆边缘盆地是大陆风化剥蚀产物的主要沉积汇,其中有机碳的埋藏通量及其控制机制的研究对于理解全球碳循环具有重要科学意义。本研究基于南海东北部台西南盆地TWS-1岩芯的AMS14C测年、总有机碳、总氮含量和稳定碳同位素组成的分析,探讨了末次盛冰期23ka BP以来南海东北部陆源有机碳的来源、历史和影响机制。与潜在物源端元对比表明,台湾是研究站位沉积物陆源有机碳的主要物源,相对海源其贡献比例约为58%,陆源物质可能主要通过海底峡谷水道和低海平面时期陆架河流输入。重建的陆源有机碳通量在末次冰消期早期(19—13kaBP)和中全新世(7—4ka BP)期间有两个峰值,分别约0.16g/(cm2·ka)和0.09g/(cm2·ka)。综合分析表明,二者分别受控于冰期低海平面时期增强的陆架风化剥蚀和全新世季风强盛期降水驱动的古台湾岛剥蚀。我们的工作表明冰期-间冰期循环中海平面和季风分别驱动的大陆边缘有机碳埋藏可能对全球碳循环和大气CO2浓度演变有重要影响。  相似文献   

17.
珠江口盆地陆架坡折带海底滑坡及其影响因素   总被引:3,自引:1,他引:2  
为了解海底滑坡在陆架坡折演化过程中所起的作用并分析影响海底滑坡发育的因素,以最新采集的二维和三维地震资料为基础,综合运用了地貌分析和地震解释技术,通过对滑坡的地貌形态特征及地震响应特征进行详细刻画,在珠江口盆地陆架坡折带新近纪地层中识别出多处海底滑坡,明确了其分布范围并建立了滑坡发育的地质模式。分析认为,珠江口盆地相对海平面变化和流体活动的综合作用是导致研究区海底不稳定的主要因素。海底滑坡发源于海底峡谷的朔源侵蚀,向上陆坡扩展并终止于陆架坡折带。  相似文献   

18.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。  相似文献   

19.
The continental-shelf morphology is dominated by glacial erosion and deposition. Erosion is prominent on the near-shore shelf and deposition along the outer shelf edge. The continental slope is characterized by delta-shaped progradations (glaciomarine-sediment fans) seaward of the shelf channels. Canyons cross the continental slope only in the region southeast of Cape Farewell. The continental rise is incised by a number of submarine canyons. Broad sediment ridges on the upper continental rise are probably canyon-eroded remains of extensive Plio-Pleistocene fans. A mid-ocean channel which crosses the continental rise is possibly related to the axis of maximum depth of Denmark Strait. Despite the presence of strong bottom currents, there is no indication of depositional sediment drifts along the continental margin of Greenland between Cape Farewell and Denmark Strait. This may be a function of high current velocity or low sediment load.Sea floor older than 60 m.y. B.P. is present just seaward of the Greenland continental margin implying either downwarped continental material or an early rift formed prior to the separation of Greenland from the European plate. A left lateral offset of anomalies 20 and 21 at 65°N indicates a major fracture zone related to the Greenland continental margin offset nearby.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号