首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Aegean volcanic arc formed in response to northeasterly subduction of the Mediterranean sea floor beneath the Aegean Sea. The active arc lies over 250 km from the Hellenic Trench in a region which has suffered considerable extension and subsidence since the mid-Tertiary. Suites of samples from the different volcanic centres making up the arc have been studied geochemically in order to assess lateral variations and to constrain the contribution of crustal contamination and sediment subduction in their petrogenesis.Lavas from all the major volcanic centres exhibit typical calc-alkaline major-element characteristics, and show enrichment in light REE and LIL elements but low contents of HFS elements. The enrichment in light REE is greater in the eastern (Nisyros, Kos) and western (Milos, Poros, Methana, Aegina) sectors of the arc (Cen/Ybn=4) than in the central Santorini sector (Cen/Ybn=2). All lavas have significant negative Eu anomalies and many have slight negative Ce anomalies. Less coherence is observed in the abundances and ratios of the other LIL elements, compared with the REE, along the island chain.Whereas the effects of crystal fractionation are evident in the trace-element patterns of lavas from individual islands, and are particularly well marked for Santorini, it is clear that there are consistent differences in trace-element abundances and ratios in the lavas of the various islands which reflect compositional differences in the mantle source and/or in melting conditions. Lavas from the eastern and western sectors have much higher levels of Ba and Sr but relatively lower Th, K and Rb than those from Santorini. Although some geochemical features could be explained through involvement of a component of subducted sediment in the source regions of the volcanoes, other element abundances and ratios indicate that this component must be very small. Detailed consideration of the inter-island geochemical variations suggests a complex make-up of the underlying lithosphere, resulting from a long history of subduction. In the region of Santorini, where crustal stretching is greatest, the underlying asthenosphere may be involved in magma production.  相似文献   

2.
Nisyros is a totally volcanic island located at the eastern limit of the quaternary calc-alkaline island arc system of the South Aegean Sea. Its age is rather young since K/Ar dating has given an age of 0.2 m.y. B.P. for one of the oldest outcropping products of this volcano. The volcanological evolution of Nisyros has tentatively been reconstructed as follows:
  1. after a period (from 3.0? to 0.2 m.y. B.P.) of submarine activity, evidenced by the presence of pillow-lavas and hyaloclastites, the volcano grew above sea level;
  2. effusive and explosive subaerial activity from different vents built up a complex stratovolcano, probably around 0.2 m.y. B. P.;
  3. at the end of an intense explosive activity (between 0.2 m.y. B.P. and Present) the top of the volcano collapsed forming a caldera which is still perfectly preserved. A post-caldera activity with eruptions of huge and viscous domes and lava flows of uniform composition, both inside and outside the caldera, concluded this stage of the volcano evolution;
  4. in historical times, spectacular phreatic explosion craters formed on the caldera floor;
  5. presently, a large area of the caldera floor is affected by a considerable hydrothermal activity. The hypothesis is formed that Nisyros volcano is not yet extinct.
Four small volcanic islets — Yali, Stronjili, Pakia and Perigusa — located a few miles on the North and West of Nisyros, although volcanologically independent of one another, are composed of products which are attributable, from the petrologic point of view, to the Nisyros magma. The volcanic rocks of Nisyros and of its neighbouring minor islands as well as the volcanics of the coeval volcanoes of the South Aegean Sea arc (Aegina, Milos, Santorini, etc.) belong to a typical orogenic calc-alkaline series (from basic andesites through andesites-dacites-rhyodacites to strongly silicic rhyolites) with normal K2O contents. The potassium contents of these rocks are compatible with the depth of 150 km (as inferred from geophysical data) for the inclined seismic zone underneath the active volcanic arc. The existence of a top-caldera as well as the occurrence of a huge amount of xenoliths (hornblende-rich cumulates and contact-metamorphic calcareous rock derivatives) suggest the presence of a magma chamber at a relatively shallow depth beneath the volcano. The rhyolitic obsidians of Yali can be considered as residual liquids from the Nisyros rhyodacites, thus representing the end-members of a fractionation process. Volcanological and petrological arguments are in favour of fractional crystallization as the most probable genetic process for the calc-alkaline differentiation series of Nisyros and of its neighbouring minor islands. However, the lack of any rock with a high alumina basalt composition makes it difficult to define exactly the nature of the parent magma. According to recent geophysical data, continental collision is already in progress at the Hellenic trench. Therefore, Nisyros and the other active volcanoes of the South Aegean Sea arc are approaching the senile stage. What would follow could be a transition to shoshonitic magmatism as a consequence of the deepening of the lithospheric slab under the Aegean microplate. The limited extension and the relatively short-lived calc-alkaline activity of the South Aegean Sea arc could be related to the particular geodynamic pattern of the Mediterranean area which is characterized by a microplates mosaic between the two converging African and Eurasian major plates.  相似文献   

3.
The South Aegean active volcanic arc lies along the 150-km seismic isodepth of a Benioffzone and consists in andesitic, dacitic and rhyolitic volcanoes of an orogenic calc-alkaline type. In the eastern part of the arc there are two main volcanic sites in the Nisyros and Kos islands. High shallow and intermediate depth seismic activity occurs in this volcanic area. Seismological data concerning the 1911–1980 period have been used to investigate seismic properties in that area. Two, distinct regions with different seismotectonic features have been defined. The internal region (Nisyros active volcano and its proximity) is characterized by a shallow, thin seismogenetic layer with abnormally highb-value, locally concentrated stresses, low seismicity and highly heterogeneous structure. These features are probably due to a magmatic body intruded in shallow depths within the crust. The possibility of magma formation in the upper surface of the descending slab or within the upper mantle wedge overlying this slab in the Nisyros-Kos area is herein discussed. On the contrary, the remaining (external) region, including the non-active volcanic island of Kos, is characterized by normal for tectonic shocksb-value, thick seismogenetic layer and high seismicity. It seems that in this region there is not a magmatic intrusion at least in shallow depths within the crust.  相似文献   

4.
We report chemical compositions (major and trace components including light hydrocarbons), hydrogen, oxygen, helium and nitrogen isotope ratios of volcanic and geothermal fluids of Mutnovsky volcano, Kamchatka. Several aspects of the geochemistry of fluids are discussed: chemical equilibria, mixing of fluids from different sources, evaluation of the parent magmatic gas composition and contributions to magmatic vapors of fluids from different reservoirs of the Kamchatkan subduction zone. Among reactive species, hydrogen and carbon monoxide in volcanic vapors are chemically equilibrated at temperatures >300°C with the SO2-H2S redox-pair. A metastable equilibrium between saturated and unsaturated light hydrocarbons is attained at close to discharge temperatures. Methane is disequilibrated. Three different sources of fluids from three fumarolic fields in the Mutnovsky craters can be distinguished: (1) magmatic gas from a large convecting magma body discharging through Active Funnel, a young crater with the hottest fumaroles (up to 620°C) contributing ~80% to the total volcanic gas output; (2) volcanic fluid from a separate shallow magma body beneath the Bottom Field of the main crater (96–280°C fumaroles); and (3) hydrothermal fluid with a high relative and absolute concentrations of CH4 from the Upper Field in the main crater (96–285°C fumaroles). The composition of the parent magmatic gas is estimated using water isotopes and correlations between He and other components in the Active Funnel gases. The He-Ar-N2 systematics of volcanic and hydrothermal fluids of Mutnovsky are consistent with a large slab-derived sedimentary nitrogen input for the nitrogen inventory, and we calculate that only ~1% of the magmatic N2 has a mantle origin and <<1% is derived from the arc crust.  相似文献   

5.
Nisyros island, a Quaternary volcanic center located at the SE of the Aegean Volcanic Arc, has been in the past characterized by periods of intense seismic activity accompanied sometimes by hydrothermal explosions, the last one being in 1887. The recent long lasting episode of unrest (1995–1998) in the area is the first instrumentally documented providing information on the behavior of the volcano. Evidence from seismicity and SAR interferometry suggests that the presently active part of the Kos–Nisyros volcano-tectonic complex is located at the NW coast of Nisyros island defining an area much smaller than the whole volcano-tectonic area. Seismicity patterns vary both temporally and spatially consistently with different rates of vertical ground deformation inferred from SAR interferometry. These observations help us to discuss the different elements controlling the behavior of the volcanic system such as: the existence, location and timing of magma chamber inflation, the occurrence of tensile failure at the boundaries of the chamber and the possibility of magmatic fluids being expelled to form a shallow magmatic intrusion, the seismic failure and migration of hypocenters indicating shallow magma transport.  相似文献   

6.
An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers.  相似文献   

7.
Low-to-high temperature fumaroles discharging from the Active Crater of Lascar volcano (northern Chile) have been collected in November 2002, May 2005 and October 2006 for chemical and isotopic analysis to provide the first geochemical survey on the magmatic-hydrothermal system of this active volcano. Chemical and isotopic gas composition shows direct addition of high-temperature fluids from magmatic degassing, mainly testified by the very high contents of SO2, HCl and HF (up to 87,800, 29,500 and 2,900 μmol/mol) and the high R/Ra values (up to 7.29). Contributions from a hydrothermal source, mainly in gas discharges of the Active Crater rim, has also been detected. Significant variations in fluid chemistry, mainly consisting of a general decrease of magmatic-related compounds, i.e. SO2, have affected the fumarolic system during the period of observation, indicating an increase of the influence of the hydrothermal system surrounding the ascending deep fluids. The chemical composition of Active Crater fumaroles has been used to build up a geochemical model describing the main processes that regulate the fluid circulation system of Lascar volcano to be utilized in volcanic surveillance.  相似文献   

8.
In contrast to most other arcs with oceanic plate subduction, the Aegean arc is characterized by continent–continent subduction. Noble gas abundances and isotopic compositions of 45 gas samples have been determined from 6 volcanoes along the arc, 2 islands in the back-arc region and 7 sites in the surrounding areas. The 3He/4He ratios of the samples ranged from 0.027RA to 6.2RA (RA denotes the atmospheric 3He/4He ratio of 1.4×10−6), demonstrating that even the maximum 3He/4He ratio in the region is significantly lower than the maximum ratios of most oceanic subduction systems, which are equal to the MORB value of 8±1 RA. Regional variations in the 3He/4He ratio were observed both along and across the arc. The maximum 3He/4He ratio was obtained from Nisyros volcano located in the eastern end of the arc, and the ratio decreased westward possibly reflecting the difference in potential degree of crustal assimilation or the present magmatic activity in each volcano. Across the volcanic arc, the 3He/4He ratio decreased with an increasing distance from the arc front, reaching a low ratio of 0.063RA in Macedonia, which suggested a major contribution of radiogenic helium derived from the continental crust. At Nisyros, a temporal increase in 3He/4He ratio due to ascending subsurface magma was observed after the seismic crisis of 1995–1998 and mantle neon was possibly detected. The maximum 3He/4He ratio (6.2RA) in the Aegean region, which is significantly lower than the MORB value, is not probably due to crustal assimilation at shallow depth or addition of slab-derived helium to MORB-like mantle wedge, but inherent characteristics of the subcontinental lithospheric mantle (SCLM) beneath the Aegean arc.  相似文献   

9.
One of the most prominent tectonic features of the Eastern Mediterranean region is the Hellenic volcanic arc in the Southern Aegean Sea, with the Santorini Island being one of the most active volcanic centers. Recent seismic studies show that the main seismic activity of the Santorini volcanic center is strongly associated with the volcanic processes, as well as with the seismo-tectonic regime of the broader Southern Aegean Sea area. The main cluster of local seismicity is located near the northeastern edge of the Santorini Island, beneath the Coloumbo Reef, which is a submarine volcanic seamount of the Santorini Island volcanic system.  相似文献   

10.
Soil gas investigation is a useful tool to detect active faults. The sudden appearance of soil gas anomalies in zones of deep-reaching faults represents a promising potential precursor of earthquakes and volcanic eruptions. In volcanic areas the development of soil gas monitoring techniques is particularly important, as they can represent, together with remote sensing techniques, the only geochemical methods that can be safely applied during volcanic unrest, when it becomes impossible or too dangerous to sample crater fumaroles. A soil gas survey was carried out in June 1993 at the main island of Thera, in the Santorini volcanic complex. CO2 flux and CO2 and helium concentrations were measured at 50 cm depth for 76 points covering the entire island, with a spacing of 500 m or less. Several anomalous soil degassing sites have been detected. The main anomalies correspond to the Kolumbos line and to the Kameni line, two volcano-tectonic fault systems that controlled all the historic volcanic activity of Santorini. A third anomaly is related to a gas-leaking fault cutting the geothermal field of southern Thera. Soil gas data, together with geovolcanological and seismological evidence, indicate that the Kolumbos and Kameni lines are the most probable sites for future volcanic or seismic reactivation, and provide the basis for the establishment of a new geochemical monitoring technique at Thera.  相似文献   

11.
The densely populated metropolitan area of Quito is located on the slopes of the active Guagua Pichincha volcano at only 10 km from the crater. Recently, the Italian Ministry of Foreign Affairs sponsored a project for the mitigation of volcanic hazard in this area. The geochemical study carried out as part of this project was aimed at constructing a geochemical model of the zone for use in volcanic surveillance.According to this geochemical model, a hydrothermal aquifer (T = 200–240°C), fed both by meteoric waters and by fluids released by a magma body, lies at shallow levels beneath Guagua Pichincha crater. The crater fumaroles are essentially fed by steam boiled off from the hydrothermal aquifer. The high flow rate fumaroles located in the dome area show significant SO2 contents, which suggest a relatively high contribution of magmatic fluids in the zone of the aquifer feeding them. The absence of SO2 in the fumarolic discharges near the southern crater wall indicates instead that the magmatic fluids dissolve entirely into the aquifer here. The hot springs located at the western end of the crater represent the lateral discharge of the hydrothermal aquifer.On the basis of this model, it is likely that an increment in the flux of both the magmatic fluids and the heat from a magma body produces an increase, albeit small, of the pressure-temperature conditions of the hydrothermal system and consequent changes in flow rate and fluid chemistry of the fumarolic vents. In particular, total sulphur and possibly hydrochloric acid may increase in all the vents and sulphur dioxide may appear in other fumarolic discharges. The varying thermodynamic conditions in the hydrothermal aquifer can be evaluated on the basis of the equilibria among carbon species and hydrogen. Only minor delayed changes are expected in the physical-chemical characteristics of the springs located at the western end of the crater.  相似文献   

12.
The Campi Flegrei (Naples, Campanian Plain, southern Italy) geothermal system is hosted by Quaternary volcanic rocks erupted before, during and after the formation of the caldera that represents one of the major structural features in the Neapolitan area. The volcanic products rest on a Mesozoic carbonate basement, cropping out north, east and south of the area. Chemical (major, minor and trace elements) and stable isotope (C, H, O) analyses were conducted on drill-core samples recovered from geothermal wells MF-1, MF-5, SV-1 and SV-3, at depths of ˜ 1100 to 2900 m. The study was complemented by petrographic and SEM examination of thin sections. The water which feeds the system is both marine and meteoric in origin. Mineral zonation typical of a high-temperature geothermal system exists in all the geothermal wells; measured temperatures in wells are as high as ˜ 400 °C. The chemical composition of the waters suggests the existence of two reservoirs: a shallow reservoir (depth < 2000 m) fed by seawater that boiled at 320 °C and became progressively diluted by steam-heated local meteoric water during its ascent; and a deeper reservoir (depth > 2000 m) of hypersaline water. The drill-cores are mainly hydrothermally altered volcanics of trachy-latitic affinity, but some altered pelites and limestones are also present. Published Na, Mg and K concentrations of selected geothermal waters indicate that the hydrothermal fluids are in equilibrium with their host rocks, with respect to K-feldspar, albite, sericite and chlorite. The measured δ18O(SMOW) values of rocks range from +4.3 to + 16.5%. The measured δD(SMOW) values range from − 79 to − 46%. The calculated isotopic composition of the fluids at equilibrium with the samples vary from + 1 to + 8.3%. δ18O and from − 52 to + 1%. δD. The estimated isotopic composition of the waters at equilibrium with the studied samples confirmed the existence of two distinct fluid types circulating in the geothermal system. The shallower has a marine water signature, while the deeper water has a signature consistent both with magmatic and meteoric origins. In the latter case, the recharge of this aquifer likely occurs at the outcrop of the Mesozoic Limestones surrounding the Campanian Plain; after infiltration, the water percolates through evaporitic layers, becoming hypersaline and D-depleted.  相似文献   

13.
Gas samples from some fumaroles at ‘La Fossa' crater and Baia di Levante on Vulcano Island and from a diffuse soil gas emission were analysed during 1995–1996, along with water samples from thermal wells in the area of Vulcano Porto. During 1996, we observed a significant increase both in the gas/steam ratio and in the CO2 concentration, as well as strong variations in δ13CCO2, δDH2O and δ18OH2O of fumarolic gases. These variations are probably related to an increased inflow of deep fluids of magmatic origin. The temperatures of fumaroles did not show remarkable variations except for fumarole F11. In this case, temperature increased by about 80°C from February to August 1996. During the same period, remarkable variations in temperature, phreatic level and chemical and isotopic composition of water were also recorded in one of the geothermal wells in the Vulcano Porto area (Camping Sicilia; T60°C). The observed variations in this well are probably related to a pressure build-up, occurring at least in the surficial part of the system, because of increased gas flux and/or decreased permeability of the fumarolic degassing system. Chemical and isotopic composition of the water showed that during this evolutionary phase, the content of fumarolic condensate in this well was about 80 to 90%. Based on the observation of physical and chemical variables of the Camping Sicilia fluids, during this phase of activity, it is concluded that this area is affected by a phreatic eruption hazard if a volcanic episode with high energy discharge in a limited time span occurs. It follows that this well may be considered as a preferential point for volcanic activity monitoring, both in the case of normal routine surveillance and in the case of inaccessibility to the crater area.  相似文献   

14.
The chemical and isotopic compositions of volcanic gases at a borehole and a natural fumarole in the Owakudani geothermal area, Hakone volcano, Japan, have been repeatedly measured since 2001, when a seismic swarm occurred in the area. The CO2/H2O and CO2/H2S ratios were high in 2001. It increased in 2006 and again in 2008 when seismic swarms occurred beneath the geothermal area. The observed increases suggest the injection of CO2- and SO2-rich magmatic gas into the underlying hydrothermal reservoir, implying that the magmatic gas was episodically supplied to the hydrothermal system in 2006 and 2008. The earthquake swarms probably resulted from the injection of gas through the shallow crust accompanying the break of the sealing zone.  相似文献   

15.
This study summarizes the results of structural, geochemical and seismological surveys carried out at Nisyros volcano (Aegean Sea, Greece) during 1999–2001. Field mapping and mesostructural measurements at the summit caldera (Lakki plain) indicate that faults follow two main strikes: NE-SW and N-S. The N-S striking fault depicts extensional features accommodating the left-lateral component of motion of the NE-SW- striking main faults. The NE-SW preferred strike of the Lakki faults and of the mineral-filled veins as well as the distribution and NE-SW elongation of the hydrothermal craters indicate that tectonics plays a major role in controlling the fluid pathway in the Nisyros caldera. The same NE-SW trend is depicted by CO2 anomalies revealed through detailed soil CO2 flux surveys, thus indicating a structural control on the pattern of the hydrothermal degassing. Degassing processes account for a thermal energy release of about 43 MW, most of which occurs at Lofos dome, an area that was affected by hydrothermal eruptions in historical times. The seismic study was conducted in June 2001, using a deployment specifically aimed at detecting signals of magmatic-hydrothermal origin. Our instruments recorded local and regional earthquakes, a few local long-period events (LP), and bursts of monochromatic tremor. Local earthquake activity is concentrated beneath the caldera, at depths generally shallower than 6 km. Plane-wave decomposition of tremor signal indicates a shallow (<200 m) source located in the eastern part of the caldera. Conversely, LP events depict a source located beneath the central part of the caldera, in the area of Lofos dome, at depths in the 1–2-km range. In agreement with geochemical and structural measurements, these data suggest that both the deeper and shallower part of the hydrothermal system are subjected to instability in the fluid flow regimes, probably consequent to transient pressurization of the reservoir. These instabilities may be related to input of hot fluids from the deeper magmatic system, as suggested by the variations in geochemical parameters observed after the 1997–1999 unrest episode. The significance of seismological and geochemical indicators as precursors of hydrothermal explosive activity at Nisyros is discussed.Editorial responsibility: H. Shinohara  相似文献   

16.
New geochronological and volcanological data from volcanics of the island group of Milos (South Aegean active volcanic arc), allow four main cycles of volcanic activity to be distinguished, ranging in age between 3.5 and 0.1 m.y. B.P. The oldest volcanic activity consists almost totally of pyroclastics and submarine products, followed by subaerial ones. The eruptive centers migrated in time and concentrated, during the most recent volcanic phase, in the central part of Milos and on the island of Antimilos. The oldest products are dominated by andesites and dacites, while the most recent ones mainly consist of rhyolites. The volcanic evolution and the geochemical characters of the erupted products suggest that the feeding system of the oldest volcanism was located in the deep continental crust, where contamination and fractional crystallization jointly occurred. The younger cycle of volcanic activity was fed from small and relatively shallow magma chambers, where contamination processes played a minor role. These magma bodies are considered to responsible for the shallow thermal anomaly giving rise to the high enthalpy field on Milos.  相似文献   

17.
Results are presented on scubadiving investigations carried out on thermal manifestations in the area of Panarea (Aeolian Islands). The area investigated falls inside a caldera which extends from the main island to the group of islets located to the northeast. The distribution of the gaseous manifestations is regulated by the NE-SW, NW-SE and N-S regional tectonic directrices, through which the more recent basic magma intruded, giving rise to dikes and pillow lavas. fO2-temperature relation of the gases sampled in the investigated area was calculated to be: logfO2 = 11−24,593/T which indicates that a buffering mechanism acted on the gases as they cooled down during their ascent. The high 3He/4He ratio (6 × 10−6) and the δ13C = −3.2%. (PDB), suggest the presence of a magmatic component in the gas feeding the investigated manifestations. The above relations and the almost constant high He/N2 ratio suggest that all the fumaroles are fed by the same deep hot fluids. On the basis of both the chemical characters of the fluids and the geothermo-barometric data, a deep geothermal body, having a temperature of about 240°C, is recognized. Two other shallower thermal aquifers, with a temperature of 170–210°C, are identified. A circulation pattern of the geothermal fluids is also proposed. On the basis of calculations regarding the convective energy released by the geothermal system of Panarea, and the magmatic mass responsible for the positive gravimetric anomaly of the area, it was estimated that the last volcanic activity took place less then 10,000 years ago.  相似文献   

18.
Mombacho is a deeply dissected volcano belonging to the Quaternary volcanic chain of Nicaragua. The southern, historic collapse crater (El Crater) currently hosts a fumarolic field with a maximum temperature of 121°C. Chemical and isotopic data from five gas-sampling field campaigns carried out in 2002, 2003 and 2005 highlight the presence of high-temperature gas components (e.g. SO2, HCl and HF), which indicate a significant contribution of juvenile magmatic fluids to the hydrothermal system feeding the gas discharges. This is strongly supported by the mantle-derived helium and carbon isotopic signatures, although the latter is partly masked by either a sedimentary subduction-related or a shallow carbonate component. The observed chemical and isotopic composition of the Mombacho fluids seems to indicate that this volcanic system, although it has not experienced eruptive events during the last centuries, can be considered active and possibly dangerous, in agreement with the geophysical data recorded in the region. Systematic geochemical monitoring of the fumarolic gas discharges, coupled with a seismic and ground deformation network, is highly recommended in order to monitor a possible new eruptive phase.  相似文献   

19.
 The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufrière, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufrière has erupted eight times since 1660, most recently in 1976–1977. All these historic eruptions have been phreatic. High-salinity, Na–Cl geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250  °C. These Na–Cl solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na–Cl thermal springs in the central Bouillante area. The Na–Cl thermal springs are surrounded by Na–HCO3 thermal springs and by the Na–Cl thermal spring of Anse à la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufrière area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190–215  °C below the "Ty" fault area and close to 260  °C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has δD and δ18O values relatively similar to those of the Na–Cl liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in 18O, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH4 in the fumaroles. The thermal features around La Soufrière dome include: (a) Ca–SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca–Na–HCO3 springs; and (c) two Ca–Na–Cl springs produced through mixing of shallow Ca–SO4 waters and deep Na–Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufrière area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na–Cl liquids coming from hydrothermal aquifer(s). Received: 9 November 1998 / Accepted: 15 July 1999  相似文献   

20.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号