首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Northern Till is a thick (>65 m) deformation till underlying some 7500 km2 of Southern Ontario, Canada including the Peterborough Drumlin Field. It was deposited below the Lake Ontario ice stream of the Laurentide Ice Sheet. The till rests on glaciotectonized aquifer sediments and consists of multiple beds of till up to 6 m thick. These are separated by boulder lags, sometimes in the form of striated pavements, with thin (<30 cm) interbeds of poorly sorted waterlaid sand. The composite till stratigraphy indicates ‘punctuated aggradation’ where the subglacial bed was built up incrementally by the repeated ‘immobilization’ of deforming overpressured till layers. Boulders and sands indicate pauses in subglacial aggradation marked by sluggish sheet flows of water that reworked the top of the underlying till. Interbeds are laterally extensive and correlated using downhole electrical conductivity, core recovery and natural gamma data. A 3-D finite element model (FEFLOW) using data from 200 cored and geophysically logged boreholes, and a large digital water well dataset of 3400 individual records shows that the till functions as a ‘leaky aquitard’ as a consequence of water flow through interbeds. It is proposed that interbeds played a similar role in the subglacial hydraulic system below the Laurentide Ice Sheet by allowing drainage of excess porewater pressures in deforming sediment and promoting deposition of till. This is in agreement with theoretical studies of deforming bed dynamics and observations at modern glaciers where porewater in the deforming layer is discharged into underlying aquifers. In this way, the presence of interbeds may be fundamental in retarding downglacier transport of deforming bed material thereby promoting the build-up of thick subglacial till successions.  相似文献   

2.
《Quaternary Science Reviews》2003,22(15-17):1687-1700
Many explanations have been provided for variations of the spatial distribution and thickness of till sheets. This paper gives new insight into the architecture of a stratigraphically distinct till sheet as a function of the type of substratum and preadvance topography at a scale of ∼10 km. This emphasises the sensitivity of the subglacial system to changes in the basal drainage conditions. The study area is the forefield of Sléttjökull at the northern margin of the Mýrdalsjökull ice cap, central south Iceland. Here, detailed lithostratigraphical and sedimentological investigations, including mapping of the thickness for two till units, sediment logging, clast fabric and geotechnical measurements provide a basis for interpretations. The results show that the thickness of a stratigraphically distinct till sheet is directly correlated to the type of substratum. Where the substratum consists of sorted sediments the till is thin. Conversely, the till is thick where the substratum consists of till overlying sorted sediments. A sedimentological model is presented in which till thickness is tied to the variable hydraulic conditions experienced in a deforming subglacial bed.  相似文献   

3.
4.
The geomorphic, stratigraphic and sedimentological characteristics of glaciolacustrine sediments in the metropolitan Detroit, Michigan area were studied to determine environments of deposition and make paleogeographic reconstructions. Nine lithofacies were identified and paleoenvironments interpreted based on their morphostratigraphic relationships with relict landforms. The sediments studied are found southeast of the Defiance and Birmingham moraines lying beneath a lowland characterized by a low morainal swell (Detroit moraine) and a series of lacustrine terraces that descend progressively in elevation southeastward. The glaciolacustrine sediments were deposited approximately 14.3–12.4 kA BP during the Port Bruce and Port Huron glacial phases of late Wisconsinan time, and are related to proglacial paleolakes Maumee, Arkona, Whittlesey, Warren, Wayne, Grassmere, Lundy and Rouge. The glaciolacustrine section is typically 2–4 m thick and consists of a basal unit of wavy-bedded clayey diamicton overlain by a surficial deposit of stratified and cross-stratified sand and gravel. The basal unit is comprised of subaqueous debris flow deposits that accumulated as subaqueous moraine in paleolake Maumee along the retreating front of the Huron lobe. The surficial deposits of sand and gravel were formed by traction, resulting from lacustrine wave activity and fluvial processes, in lakebed plain, beach ridge and deltaic depositional settings. Much of the lake-margin sand and gravel was derived from clayey diamicton by lacustrine wave action and winnowing, and that associated with paleolakes of the Port Huron phase is largely reworked Port Bruce sediment. Paleogeographic reconstructions show that the Defiance, Birmingham and Detroit moraines, Defiance and Rochester channels, and the Rochester delta, were deposited penecontemporaneously as paleolake Maumee expanded northward across the map area. A unique type of wavy bedform is characteristic of clayey diamicton deposited by subaqueous mass flow in the study area that is useful for differentiating sediment: 1) deposited by mass flow in subaqueous vs. subaerial settings, and 2) deposited by subaqueous mass flow vs. basal till. These bedforms are a useful tool for identifying subglacial meltwater deposits, and facilitate the mapping and correlation of glacial sediments based on till sheets. The map area provides a continental record of ice sheet dynamics along the southern margin of the Laurentide ice sheet during Heinrich event H-1. The record reveals rapid glacial retreat (~ 0.8 km/yr) contemporaneous with the discharge of a large volume of meltwater. Evidence in the study area for subglacial meltwater is problematic, but indications that periglacial conditions persisted in the map area until ~ 12.7 kA BP, and extended for 200 km or more south of the ice front suggest that a frozen substrate may have contributed to instability of the LIS.  相似文献   

5.
Victoria Island lies at the north-western limit of the former North American (Laurentide) Ice Sheet in the Canadian Arctic Archipelago and displays numerous cross-cutting glacial lineations. Previous work suggests that several ice streams operated in this region during the last (Wisconsinan) glaciation and played a major role in ice sheet dynamics and the delivery of icebergs into the Arctic Ocean. This paper produces the first detailed synthesis of their behaviour from the Last Glacial Maximum through to deglaciation (~21–9.5 cal ka BP) based on new mapping and a previously published radiocarbon-constrained ice sheet margin chronology. Over 70 discrete ice flow events (flow-sets) are ‘fitted’ to the ice margin configuration to allow identification of several ice streams ranging in size from large and long-lived (thousands of years) to much smaller and short-lived (hundreds of years). The reconstruction depicts major ice streams in M'Clure Strait and Amundsen Gulf which underwent relatively rapid retreat from the continental shelf edge at some time between ~15.2 and 14.1 cal ka BP: a period which encompasses climatic warming and rapid sea level rise (meltwater pulse-1a). Following this, overall retreat was slower and the ice streams exhibited asynchronous behaviour. The Amundsen Gulf Ice Stream continued to operate during ice margin retreat, whereas the M'Clure Strait Ice Stream ceased operating and was replaced by an ice divide within ~1000 years. This ice divide was subsequently obliterated by another short-lived phase of ice streaming in M'Clintock Channel ~13 cal ka BP. The timing of this large ice discharge event coincides with the onset of the Younger Dryas. Subsequently, a minor ice divide developed once again in M'Clintock Channel, before final deglaciation of the island shortly after 9.5 cal ka BP. It is concluded that large ice streams at the NW margin of the Laurentide Ice Sheet, equivalent in size to the Hudson Strait Ice Stream, underwent major changes during deglaciation, resulting in punctuated delivery of icebergs into the Arctic Ocean. Published radiocarbon dates constrain this punctuated delivery, as far as is possible within the limits imposed by their precision, and we note their coincidence with pulses of meltwater delivery inferred from numerical modelling and ocean sediment cores.  相似文献   

6.
Direct exploration of subglacial lakes buried deep under the Antarctic Ice Sheet has yet to be achieved. However, at retreating margins of the ice sheet, there are a number of locations where former subglacial lakes are emerging from under the ice but remain perennially ice covered. One of these lakes, Hodgson Lake (72°00.549′S, 068°27.708′W) has emerged from under more than 297–465 m of glacial ice during the last few thousand years. This paper presents data from a multidisciplinary investigation of the palaeolimnology of this lake through a study of a 3.8 m sediment core extracted at a depth of 93.4 m below the ice surface. The core was dated using a combination of radiocarbon, optically stimulated luminescence, and relative palaeomagnetic intensity dating incorporated into a chronological model. Stratigraphic analyses included magnetic susceptibility, clast provenance, organic content, carbonate composition, siliceous microfossils, isotope and biogeochemical markers. Based on the chronological model we provisionally assign a well-defined magnetic polarity reversal event at ca 165 cm in the lake sediments to the Mono Lake excursion (ca 30–34 ka), whilst OSL measurements suggest that material incorporated into the basal sediments might date to 93 ± 9 ka. Four stratigraphic zones (A–D) were identified in the sedimentological data. The chronological model suggests that zones A–C were deposited between Marine Isotope Stages 5–2 and zone A during Stage 1, the Holocene. The palaeolimnological record tracks changes in the subglacial depositional environment linked principally to changing glacier dynamics and mass transport and indirectly to climate change. The sediment composition in zones A–C consists of fine-grained sediments together with sands, gravels and small clasts. There is no evidence of overriding glaciers being in contact with the bed reworking the stratigraphy or removing this sediment. This suggests that the lake existed in a subglacial cavity beneath overriding LGM ice. In zone D there is a transition to finer grained sediments characteristic of lower energy delivery coupled with a minor increase in the organic content attributed either to increases in allochthonous organic material being delivered from the deglaciating catchment, a minor increase in within-lake production or to an analytical artefact associated with an increase in the clay fraction. Evidence of biological activity is sparse. Total organic carbon varies from 0.2 to 0.6%, and cannot be unequivocally linked to in situ biological activity as comparisons of δ13C and C/N values with local reference data suggest that much of it is derived from the incorporation of carbon in catchment soils and gravels and possibly old CO2 in meteoric ice. We use the data from this study to provide guidelines for the study of deep continental subglacial lakes including establishing sediment geochronologies, determining the extent to which subglacial sediments might provide a record of glaciological and environmental change and a brief review of methods to use in the search for life.  相似文献   

7.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

8.
High resolution swath bathymetry data reveal a previously glaciated submarine terrain 20 km offshore Anglesey, north Wales, UK. The detailed documentation of remarkably well-preserved subglacial and ice-marginal bedforms provides evidence for a grounded part of the Irish Sea Ice Stream in a phase of deglaciation. The observed ribbed moraines, drumlins, flutes and eskers indicate a converging ice flow to the west, which then turns south into the deeper central Irish Sea Basin. Using the relative position of the bedforms, their spatial distribution and the morphological resemblance with bedforms described in the literature, this subglacial terrain is interpreted as representing a transition zone of frozen to thawed bed conditions during deglaciation, with an eastwards migrating thawing front that partly altered the edge of the surveyed ribbed moraine field by drumlinization. The abundant De Geer moraines and iceberg scour marks superimposed on drumlins and flutes reveal that the final retreat of the grounded ice margin in the surveyed area terminated into a water-mass with extensive iceberg calving. As the glacial terrain is well preserved, no significant burial has taken place, either by glacially or terrestrially derived sediment. The strong tidal currents at present keep the submarine terrain swept clean of contemporary sediment cover.  相似文献   

9.
A series of piston cores from Flathead Lake, Montana, USA and a new radiocarbon date from the sedimentary record provide the basis for describing sedimentary processes related to deglaciation of the Flathead Lobe of the Cordilleran Ice Sheet and for interpreting the retreat history of the lobe. The oldest part of Flathead Lake sediment core records is Late Pleistocene in age and consists of cm-scale rhythmites of silt and clay, interpreted here as annual varves. Each varve contains a light-colored coarser-grained portion, inferred to represent deposition during peak annual runoff, and a darker-colored finer-grained portion interpreted to represent sediment accumulation during seasonal low-flow conditions. The coarser-grained portions, especially in the stratigraphically older sections of each core, contain sedimentary structures that reflect traction transport. Based on these sedimentary structures, their facies characteristics, and their spatial distribution within the lake, we interpret the thicker, light-colored portion of each varve to be deposited by hyperpycnal flows caused by seasonal melt events rather than more classic turbidity currents.Immediately overlying Late Pleistocene rhythmites in all Flathead Lake cores is a unique, significantly coarser-grained dm-scale silt bed with a median grain size up to 50 µm. This silt bed has a sharp, locally erosional base and fines upward but does not contain any other sedimentary structures. In contrast to the rhythmites, we interpret this silt bed to represent a single, short-lived catastrophic sedimentation event generated by a large glacial outburst flood. Overlying this distinct bed are several other cm-scale beds of mainly silt that exhibit a basal upward-coarsening followed by an upward-fining median grain size profile. We interpret these beds and their grain size trends as reflecting the rising and falling hydrograph limbs of outburst floods derived from more distal sources located in the upstream parts of the upper Flathead watershed.The sediment record from Flathead Lake, together with results from geologic and geomorphologic 1:24,000 scale mapping around the lake margins, provide a series of constraints regarding the paleogeographic evolution of the area during deglaciation. Overall upward-thinning and upward-fining of the varved portion of the sediment core records reflects northward retreat of the southern Flathead Lobe ice margin starting at latest 14,475 ± 150 cal yr BP, the depositional age of the oldest varve in any of our cores. The depositional age of silt beds overlying the varved records is constrained as between 14,150 ± 150 cal yr BP and 13,180 ± 120 cal yr BP. Within the available chronostratigraphic constraints, the outburst floods interpreted to have delivered this silt to the Flathead Lake basin also downcut a bedrock nick point below the Flathead Lake outlet, oriented a series of large boulders downstream, and deposited a series of large flood bars on the lower Flathead River floodplain.  相似文献   

10.
Terrestrial and marine subglacial landforms in eastern Scotland are used to evaluate previously unsubstantiated notions of ice streaming within the British Ice Sheet (BIS) in this area during the last glacial cycle. Employing both regional and local-scale data sets, we describe onshore landform-sediment assemblages, offshore geomorphology and stratigraphy, and reconstructed palaeo-ice flow patterns. The results and their glaciological significance are discussed in the context of stratigraphical and geomorphological frameworks established by earlier workers, and are compared with modelled reconstructions for the BIS in this area. We conclude that the Main Late Devensian ice sheet in eastern Scotland hosted a zone of fast-flowing ice at least 100 km long and 45 km wide, akin to a contemporary ice stream. This sector - the Strathmore Ice Stream - flowed through a combination of basal sliding on meltwater-lubricated rigid beds and by deforming unconsolidated basal substrates.  相似文献   

11.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

12.
Digital elevation models of the area around the Solway Lowlands reveal complex subglacial bedform imprints relating the central sector of the LGM British and Irish Ice Sheet. Drumlin and lineation mapping in four case studies show that glacier flow directions switched significantly through time. These are summarised in four major flow phases in the region: Phase I flow was from a dominant Scottish dispersal centre, which transported Criffel granite erratics to the Eden Valley and forced Lake District ice eastwards over the Pennines at Stainmore; Phase II involved easterly flow of Lake District and Scottish ice through the Tyne Gap and Stainmore Gap with an ice divide located over the Solway Firth; Phase III was a dominant westerly flow from upland dispersal centres into the Solway lowlands and along the Solway Firth due to draw down of ice into the Irish Sea basin; Phase IV was characterised by unconstrained advance of Scottish ice across the Solway Firth. Forcing of a numerical model of ice sheet inception and decay by the Greenland ice core record facilitates an assessment of the potential for rapid ice flow directional switching during one glacial cycle. The model indicates that, after fluctuations of smaller radially flowing ice caps prior to 30 ka BP, the ice sheet grows to produce an elongate, triangular-shaped dome over NW England and SW Scotland at the LGM at 19.5 ka BP. Recession after 18.5 ka BP displays a complex pattern of significant ice flow directional switches over relatively short timescales, complementing the geomorphologically-based assessments of palaeo-ice dynamics. The palaeoglaciological implications of this combined geomorphic and modelling approach are that: (a) the central sector of the BIIS was as a major dispersal centre for only ca 2.5 ka after the LGM; (b) the ice sheet had no real steady state and comprised constantly migrating dispersal centres and ice divides; (c) subglacial streamlining of flow sets was completed over short phases of fast flow activity, with some flow reversals taking place in less than 300 years.  相似文献   

13.
《Sedimentary Geology》2006,183(3-4):159-179
In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m 2, sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s 1. Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary ‘caps’ overlie a more stable dune ‘core’. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.  相似文献   

14.
《Quaternary Science Reviews》2007,26(3-4):479-493
Evidence from glacier forefields and lakes is used to reconstruct Holocene glacier fluctuations in the Spearhead and Fitzsimmons ranges in southwest British Columbia. Radiocarbon ages on detrital wood and trees killed by advancing ice and changes in sediment delivery to downstream proglacial lakes indicate that glaciers expanded from minimum extents in the early Holocene to their maximum extents about two to three centuries ago during the Little Ice Age. The data indicate that glaciers advanced 8630–8020, 6950–6750, 3580–2990, and probably 4530–4090 cal yr BP, and repeatedly during the past millennium. Little Ice Age moraines dated using dendrochronology and lichenometry date to early in the 18th century and in the 1830s and 1890s. Limitations inherent in lacustrine and terrestrial-based methods of documenting Holocene glacier fluctuations are minimized by using the two records together.  相似文献   

15.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

16.
Detailed sedimentological and microtextural analyses of newly-discovered late Neogene diamictites and other coarse-grained facies, mostly sandwiched between hyaloclastite of the James Ross Island Volcanic Group and Cretaceous sandstone and mudstone, indicate deposition mainly by glacigenic debris flows. The deposits on James Ross Island (northern Antarctic Peninsula) constrain the depositional setting, ice–bed dynamics and regional palaeoclimate. The sequences on James Ross Island vary in age but are mainly late Miocene and Pliocene. Unlike Neogene sedimentary sequences elsewhere in Antarctica, those on James Ross Island are unusually well-dated by a combination of 40Ar/39Ar and 87Sr/86Sr analyses on fresh interbedded lavas and pristine bivalve molluscs, respectively. The Sr isotopic ages of the debris flows cluster around 4.74, 4.89, 5.44, 5.78, and 6.31 Ma and probably date relatively warm periods in the northern Antarctic Peninsula region, when the bivalves lived under ice-poor or seasonally ice-free conditions. The bivalves are often remarkably well-preserved, lack adhering lithified sediment and, in at least two locations, are large, mainly unfragmented and sometimes articulated, suggesting that they were alive immediately prior to their incorporation in subaqueous debris flows at the margins of an advancing glacier. These fossiliferous glacigenic debris flows signify episodes of ice expansion during relatively warm periods, or “interglacials”, of the late Miocene and Pliocene. The James Ross Island glacigenic sedimentary successions attain thicknesses of up to 150 m and extend over 4 km laterally. The high volume of glacigenic sediment delivery implicit in the James Ross Island successions indicates that a series of dynamic ice fronts crossed the region during the late Miocene and Pliocene epochs. Associated evidence, in the form of clast abrasion (including striations and faceting) and bedrock erosion, is indicative of basal sliding and subglacial sediment deformation active at the ice–bed interface and wet-based temperate or polythermal regimes, prior to remobilisation. The evidence further suggests two local ice caps on James Ross Island during the warm periods, as well as ice-overriding by the Antarctic Peninsula Ice Sheet from the west and northwest.  相似文献   

17.
Palaeocompetence analysis and palaeodischarge estimation techniques are applied to a late Pleistocene–early Holocene gravel terrace in the Mahi River Basin, western India. Terrace sedimentology, comprising gravels overlain by sand lithofacies suggests a gradual change in palaeohydrological conditions marking a switch from braided to meandering fluvial styles. The discharge values for the gravel bedforms based on the clast size and the cross bed set thickness are estimated between ∼150–180 m3 s−1 comparable with the present day observed values albeit with a much higher competence. Results indicate that fluvial aggradation occurred under low discharge conditions with intermittent high discharge events depositing longitudinal gravel bars. The incision of these gravel bars and the formation of terraces can be attributed to the higher discharge regime post 9.2 ka. The study further indicates that whereas the aggradation of the gravel terrace during the early Holocene was controlled by the large sediment influx, the incision that followed was in response to the increase in the discharge and competence of the river flow.  相似文献   

18.
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000–8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km2. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.  相似文献   

19.
The Cairngorm Mountain area of Scotland is a classic example of a landscape of selective linear glacial erosion, with sharp contrasts in the intensity of glacial erosion between the deeply incised troughs and valleys and the undulating high plateau. This article examines the Quaternary development of Glen Avon, a 200 m deep glacial trough set within the high plateau of the mountains. Evidence concerning the aggregate basal thermal regimes of the topographically controlled ice streams that formerly developed in this area is reconstructed from the geomorphological record, including bedforms indicative of wet-based, sliding ice and of dry-based ice frozen to its bed. This mapping indicates that basal sliding was not confined exclusively to the troughs but extended towards valley heads and on to parts of the plateau adjacent to troughs. The extent of basal sliding appears to have been greatest beneath pre-Late Devensian ice sheets. Basal ice temperatures are modelled under steady-state conditions for the last ice sheet at c. 18 ka BP. Basal thermal regimes are predicted using a reconstruction of the preglacial relief and for the current topography of the area. Convergent flow of ice through the preglacial valley system appears to have been sufficient to induce basal melting and therefore to initiate valley deepening. This effect is enhanced when the model is run across the present topography. Comparison of results of the geomorphological mapping and the modelling reveals significant differences between the actual and predicted extent of basal sliding outside the main ice stream. The overall conclusion is that many ice streams in mountainous terrain are inherited from the locations of preglacial valleys, which serve to accelerate ice flow and promote frictional heating beneath ice sheets.  相似文献   

20.
Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine-medium textured subglacial till prior to final emplacement. Fractures, shears, and attenuated sediment lenses in tills reveal that they experienced some brittle shear superposed on ductile shear during till dewatering and stiffening. The Huron-Georgian Bay lobe advanced first from the northwest, deforming interstadial sediments and depositing subglacial till. Next, southward confluent flow of the Huron, Georgian Bay, and Erie lobes carved subglacial troughs into sediments and deposited (then deformed) bouldery deformation till by squeeze flow. The northwest flowing Erie lobe then prevailed, depositing deformation till, subglacial aquatic sediments, and mudflows. Finally, a pavement-bearing, hybrid deformation-lodgement till covered the section. Till formation was mainly by subglacial viscous flow with minor lodgement superposed as water content decreased and some fines were probably winnowed. This implies that till deformation probably accounted for much of the glacier movement. Therefore, rapid ice flow could have occurred over the section, along the southern margin of the Laurentide Ice Sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号