首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty 14C dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with substantial pumice discharge occurred in the 1st century, the 10th century, and in AD 1660. The ages of organic paleosols and charcoal from block-and-ash flow and fallout deposits indicate that these eruptions occurred near the end of 100 to 200 year-long cycles of discontinuous activity which was comprised of dome growth episodes and minor pumice fallouts. The first cycle took place from ~ AD 1 to 140. The second one developed during the 9th and 10th centuries, lasted 150–180 yr, and included the largest Plinian event, with a VEI of 5. The third, historic cycle, about 200 yr in duration, includes pyroclastic episodes around AD 1450 and AD 1500, explosive activity between AD 1566 and AD 1582, possible precursors of the 1660 eruption in the early decades of the 17th century, and finally the 1660 eruption (VEI 4). A fourth event probably occurred around AD 500, but its authenticity requires confirmation. The Plinian events occurred at the end of these cycles which were separated by repose periods of at least 300 yr. Older volcanic activity of similar type occurred between ~ 4000 and ~ 3000 yr BP.  相似文献   

2.
The 2000 AD eruption of Miyakejima was characterized by a series of phreatomagmatic eruptions from the subsiding caldera. Six major eruptive events occurred, and they can be divided into the first and second periods separated by a 25-day hiatus. The phreatomagmatic eruptions produced a total of ~ 2 × 1010 kg of tephra, which mainly comprised fine-grained volcanic ash. The tephra layers could be divided into six fall units corresponding to the six major eruptive events.  相似文献   

3.
El Chichón volcano consists of a 2-km wide Somma crater compound cone 0.2 Ma old with peripheral domes with a central crater reactivated several times during the Holocene. The most recent eruption at El Chichón occurred from March 28 to April 4, 1982, resulting in the worst volcanic disaster during historical times in Mexico, killing more than 2000 people and destroying nine towns and small communities. The volcanic hazard map of El Chichón is based on detailed field work that documented twelve eruptions during the last 8000 years, and computer simulations. To validate the results, computer simulations were first performed over pre-1982 topography mimicking the extent of the actual deposits produced and afterwards run over post-1982 topography. These eruptions have produced pyroclastic fall, surge, flow and lahar deposits. Pyroclastic flows have different volumes and Heim coefficients varying from 0.2 (pumice flows), to 0.15 (block-and-ash flows) and 0.10 (ash flows). Simulations using FLOW3D and TITAN2D indicate that pumice flows and block-and-ash flows can fill the moat area and follow main ravines up to distances of ca. 3 km from the crater, with no effect on populations around the volcano. On the other hand, more mobile ash flows related to column-collapse events can reach up to 4 km from the vent, but will always follow the same paths and still not affect surrounding populations. The energy-cone model was used to simulate the outflow of pyroclastic surges based on the 1982 event (H/L = 0.1 and 0.2), and shows that surges may reach some towns around the volcano.  相似文献   

4.
Ambae (also known as Aoba), is a 38 × 16 km2 lozenge-shaped island volcano with a coastal population of around 10 000. At the summit of the volcano is lake Voui — one of the largest active crater lakes worldwide, with 40 × 106 m3 of acidic water perched 1400 m a.s.l. After more than 300 years of dormancy, Ambae volcano reawakened with phreatic eruptions through Voui in 1995, and culminating in a series of surtseyan eruptions in 2005, followed by a rapid and spectacular colour change of the lake from light blue to red in 2006. Integrating lake water chemistry with new measurements of SO2 emissions from the volcano during the 2005–2006 eruptive period helps to explain the unusual and spectacular volcanic activity of Ambae — initially, a degassed magma approached the lake bed and triggered the surtseyan eruption. Depressurization of the conduit facilitated ascent of volatile-rich magma from the deeper plumbing system. The construction of a cone during eruption and the high degassing destabilised the equilibrium of lake stratification leading to a limnic event and subsequently the spectacular colour change.  相似文献   

5.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

6.
The deposits of three eruptions in the last 5000 years are described in detail in order to constrain eruptive parameters and allow a quantitative assessment of the hazard from a range of explosive eruption types at Sete Cidades volcano, São Miguel, Azores. These deposits include: the Caldeira Seca eruption (P17) which occurred around 600 yr BP, which was the last explosive event from inside the Sete Cidades caldera, the P11 eruption, dated at 2220 ± 70 yr BP, and the undated P8 eruption (< 3000 yr BP). These deposits were chosen to represent the range of likely explosive activity from the caldera.  相似文献   

7.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

8.
The Latera caldera is a well-exposed volcano where more than 8 km3 of mafic silica-undersaturated potassic lavas, scoria and felsic ignimbrites were emplaced between 380 and 150 ka. Isotopic ages obtained by 40Ar/39Ar analysis of single sanidine crystals indicate at least four periods of explosive eruptions from the caldera. The initial period of caldera eruptions began at 232 ka with emplacement of trachytic pumice fallout and ignimbrite. They were closely followed by eruption of evolved phonolitic magma. After roughly 25 ky, several phonolitic ignimbrites were deposited, and they were followed by phreatomagmatic eruptions that produced trachytic ignimbrites and several smaller ash-flow units at 191 ka. Compositionally zoned magma then erupted from the northern caldera rim to produce widespread phonolitic tuffs, tephriphonolitic spatter, and scoria-bearing ignimbrites. After 40 ky of mafic surge deposit and scoria cone development around the caldera rim, a compositionally zoned pumice sequence was emplaced around a vent immediately northwest of the Latera caldera. This activity marks the end of large-scale explosive eruptions from the Latera volcano at 156 ka.  相似文献   

9.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   

10.
Catastrophic sedimentary processes associated with explosive eruptions represent a significant geologic hazard in volcanic areas. Here we report a striking historic example of an intermediate-scale explosive event whose environmental effects were strongly amplified by secondary rapid mass flows and hydrogeologic disasters. The 472 AD Pollena eruption of Somma-Vesuvius (Campania, Italy) took place in the critical period of the fall of the Western Roman Empire. On the basis of an integrated geologic–archaeologic study we point out evidence of human habitation at the time of the eruption, effects induced and recovery time in a wide territory of Campania, and how the eruption significantly accelerated the deterioration of the local society during the Late Ancient age. The eruption began with a pulsating, sustained eruption column, followed by pyroclastic surges and scoria flows. Hydromagmatism acted early in the event, different from the typical Plinian eruptions of Somma-Vesuvius. Specific facies associations of primary and secondary volcaniclastic deposits characterize three depositional domains, including the volcano slopes, the surrounding alluvial plains and the distal mountains of the Apennine Range. Both volcano slopes and distal mountain slopes supplied loose pyroclastic material to the hyperconcentrated floods and debris flows that spread across the alluvial plains. The great impact of secondary volcaniclastic processes arose from: (1) the high vulnerability of the territory due to its geomorphic context; (2) the humid climatic conditions; (3) the hydromagmatic character of the eruption; (4) the decline of land management at the end of the Roman Empire.  相似文献   

11.
Volcanological analysis of the 10 000 yr –1538 explosive activity at Campi Flegrei shows that the most common explosive eruptions are characterized by the emplacement of flow or surge deposits, originating from the interaction between magma and shallow and/or sea water. The minimum volumes of pyroclastic products range between 0.04 and 0.7 km3; the proximal areas covered by these products range from 3–4 to 40–50 km2. The pyroclastic flow and surge deposits occurring inside the caldera have been strongly controlled by pre-existent morphology; because of this, the area of present Napoli city was blanketed by approximately 5 m of pyroclastic deposits, during the last 5000 yr.Previous analysis suggests that the presence of even very low topographic obstacles may influence pyroclastic density current run out such that future eruptive deposits would mainly be confined inside the caldera rim. We suggest that a future eruption at Campi Flegrei would not seriously involve the urbanized area of Napoli city located on the hills. On the contrary, the plains located on the eastern side of the caldera (Fuorigrotta, Bagnoli) would be the most damaged area.  相似文献   

12.
 Investigation of well-exposed volcaniclastic deposits of Shiveluch volcano indicates that large-scale failures have occurred at least eight times in its history: approximately 10,000, 5700, 3700, 2600, 1600, 1000, 600 14C BP and 1964 AD. The volcano was stable during the Late Pleistocene, when a large cone was formed (Old Shiveluch), and became unstable in the Holocene when repetitive collapses of a portion of the edifice (Young Shiveluch) generated debris avalanches. The transition in stability was connected with a change in composition of the erupting magma (increased SiO2 from ca. 55–56% to 60–62%) that resulted in an abrupt increase of viscosity and the production of lava domes. Each failure was triggered by a disturbance of the volcanic edifice related to the ascent of a new batch of viscous magma. The failures occurred before magma intruded into the upper part of the edifice, suggesting that the trigger mechanism was indirectly associated with magma and involved shaking by a moderate to large volcanic earthquake and/or enhancement of edifice pore pressure due to pressurised juvenile gas. The failures typically included: (a) a retrogressive landslide involving backward rotation of slide blocks; (b) fragmentation of the leading blocks and their transformation into a debris avalanche, while the trailing slide blocks decelerate and soon come to rest; and (c) long-distance runout of the avalanche as a transient wave of debris with yield strength that glides on a thin weak layer of mixed facies developed at the avalanche base. All the failures of Young Shiveluch were immediately followed by explosive eruptions that developed along a similar pattern. The slope failure was the first event, followed by a plinian eruption accompanied by partial fountain collapse and the emplacement of pumice flows. In several cases the slope failure depressurised the hydrothermal system to cause phreatic explosions that preceded the magmatic eruption. The collapse-induced plinian eruptions were moderate-sized and ordinary events in the history of the volcano. No evidence for directed blasts was found associated with any of the slope failures. Received: 28 June 1998 / Accepted: 28 March 1999  相似文献   

13.
Tephrochronologic studies conducted in the Levaya Avacha River valley helped determine the true age of the Veer cinder cone, which formed approximately in 470 AD (1600 14C BP). These data refute the existing idea that it was generated in 1856. The monogenetic Veer cone should be cancelled from the catalogs of historical eruptions and active volcanoes in Kamchatka. The eruption of this cone was a reflection of the all-Kamchatkan increase in the activity of endogenous processes that occurred in 0–650 AD.  相似文献   

14.
By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.  相似文献   

15.
 The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000 years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600–1900 m elevation, approximately 500 m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal–magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma–ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions. Received: 24 November 1997 / Accepted: 23 March 1999  相似文献   

16.
The size and frequency of the largest explosive eruptions on Earth   总被引:4,自引:2,他引:2  
A compilation and analysis of the size and frequency of the largest known explosive eruptions on Earth are presented. The largest explosive events are defined to be those eruptions yielding greater than 1015 kg of products (>150 times the mass of the 1991 eruption of Mt. Pinatubo). This includes all known eruptions with a volcanic explosivity index (VEI) of 8. A total of 47 such events, ranging in age from Ordovician to Pleistocene, are identified, of which 42 eruptions are known from the past 36 Ma. A logarithmic magnitude scale of eruption size is applied, based on erupted mass, to these events. On this scale, 46 eruptions >1015 kg are defined to be of magnitude M8. There is one M9 event known so far, the Fish Canyon Tuff, with an erupted mass of >1016 kg and a magnitude of 9.2. Analysis of this dataset indicates that eruptions of size M8 and larger have occurred with a minimum frequency of 1.4 events/Ma in two pulses over the past 36 Ma. On the basis of the activity during the past 13.5 Ma, there is at least a 75% probability of a M8 eruption (>1015 kg) occurring within the next 1 Ma. There is a 1% chance of an eruption of this scale in the next 460–7,200 years. While the effect of any individual M8 or larger eruption is considerable, the time-averaged impact (i.e., erupted mass×frequency) of the very largest eruptions is small, due to their rarity. The long-term, time-averaged erupted mass flux from magnitude 8 and 9 eruptions is ~10–100 times less than for M7 eruptions; the time-averaged mass eruption rate from M7 eruptions is 9,500 kg s–1, whereas for M8 and M9 eruptions it is ~70–1,000 kg s–1. Comparison of the energy release by volcanic eruptions with that due to asteroid impacts suggests that on timescales of <100,000 years, explosive volcanic eruptions are considerably more frequent than impacts of similar energy yield. This has important implications for understanding the risk of extreme events.Editorial responsibility: R. Cioni  相似文献   

17.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.  相似文献   

18.
Quilotoa volcano, an example of young dacitic volcanism in a lake-filled caldera, is found at the southwest end of the Ecuador's volcanic front. It has had a long series of powerful plinian eruptions of moderate to large size (VEI = 4–6), at repetitive intervals of roughly 10–15 thousand years. At least eight eruptive cycles (labeled Q-I to Q-VIII with increasing age) over the past 200 ka are recognized, often beginning with a phreatomagmatic onset and followed by a pumice-rich lapilli fall, and then a sequence of pumice, crystal, and lithic-rich deposits belonging to surges and ash flows. These unwelded pyroclastic flows left veneers on hillsides as well as very thick accumulations in the surrounding valleys, the farthest ash flow having traveled about 17 km down the Toachi valley. The bulk volumes of the youngest flow deposits are on the order of 5 km3, but that of Q-I's 800 yr BP ash-fall unit is about 18 km3. In the last two eruption cycles water has had a more important role.  相似文献   

19.
 Coda Q–1 was calculated at Nevado del Ruiz Volcano (NRV) before and after two phreatomagmatic eruptions (November 1985, September 1989) and for a period of stability (May 1987) using a functional form for coda derived from a single scattering model (Sato 1977). Substantial changes were found before and after the eruptions. The highest value of Q–1 was found during the November 1985 eruption, an intermediate value for the September 1989 eruption, and the lowest value for May 1987. It seems that the changes in coda Q–1 at NRV have a still-unknown relationship with the volume or magnitude of the eruption. A relatively strong frequency dependence was found for all periods. Also Q–1 clearly changed with time, suggesting that the scattering was strong for the eruption of November 1985 and decreased for the eruption of September 1989, and that the intrinsic absorption probably increased. This suggests the possibility that crystallization is taking place in the NRV magma. The clear change of coda Q–1 before and after the eruptions at NRV also suggests the possibility that coda Q–1 is a premonitory tool of activity at this volcano. Received: 25 October 1996 / Accepted: 21 January 1998  相似文献   

20.
A common sequence of phenomena associated with volcanic explosions is extracted based on seismic and ground deformation observations at 3 active volcanoes in Japan and Indonesia. Macroscopic inflation-related ground deformations are detected prior to individual explosions, while deflations are observed during eruptions. Precursory inflation occurs 5 min to several hours before eruption at the Sakurajima volcano, but just 1–2 min at Suwanosejima and 3–30 min at the Semeru volcano. The sequence commences with minor contraction, which is detected by extensometers 1.5 min before eruption at Sakurajima, as a dilatant first motion of the explosion earthquakes 0.2–0.3 s before surface explosions at Suwanosejima, and as downward tilt 4–5 s prior to eruption at the Semeru volcano. The sequence is detected for explosive eruptions with > 0.1 μrad tilt change at Sakurajima, 90% at Suwanosejima and 75% at Semeru volcanoes. It is inferred that the minor contraction is caused by a volume and pressure decrease due to the release of gas from a pocket at the top of the conduit as the gas pressure exceeds the strength of the confining plug. The subsequent violent expansion may be triggered by sudden outgassing of the water-saturated magma induced by the decrease in confining pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号