首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gravity data were integrated with seismic refraction/reflection data, well data and geological investigations to determine a general crustal structure of Tunisia. The gravity data analysis included the construction of a complete Bouguer gravity anomaly map, residual gravity anomaly maps, horizontal gravity gradient maps and a 2.5-D gravity model. Residual gravity anomaly maps illustrate crustal anomalies associated with various structural domains within Tunisia including the Sahel Block, Saharian Flexure, Erg Oriental Basin, Algerian Anticlinorium, Gafsa Trough, Tunisian Trough, Kasserine Platform and the Tell Mountains. Gravity anomalies associated with these features are interpreted to be caused either by thickening or thinning of Palæozoic and younger sediments or by crustal thinning. Analysis of the residual gravity anomaly and horizontal gravity gradient maps also determined a number of anomalies that may be associated with previously unknown structures. A north-south trending gravity model in general indicated similar subsurface bodies as a coincident seismic model. However, thinner Mesozoic sediments within the Tunisian Trough, thinner Palæozoic sediments in the Gafsa Trough, and a greater offset on the Saharian Flexure were required by the gravity data. Additionally, basement uplifts under the Kasserine Platform and Gafsa Trough, not imaged by seismic data, were required by the gravity data. The gravity model revealed two previously unknown basins north and south of the Algerian Anticlinorium (5 km), while the Erg Oriental Basin is composed of at least two sub-basins, each with a depth of 5 km.  相似文献   

2.
An integrated interpretation of multi-channel seismic reflection, gravity and magnetic datasets belonging to northern most part of the 85°E Ridge in the Mahanadi offshore is carried out to study the crustal structure and mode of its emplacement. The basement structure map of the ridge reveals that it is 130–150 km wide and is composed of an eastern high which appears as a continuous, broad and smooth topographyand the western high characterized by several steep isolated highs. The seismic velocities reported for the first time over the ridge indicate several sedimentary sequences ranging in velocities between 1.6 and 4.0 km/s above the acoustic basement top. The salient aspects of the sedimentary velocities are; a low velocity layer (2.6–3.2 km/s) within the Cretaceous sequence in the intervening depressions encompassing the flank region, and a regionally widespread higher velocity layer (3.5–3.8 km/s) belonging to the Eocene–Oligocene section overlying the ridge. A layer having a velocity of 4.2–4.7 km/s probably made of volcanoclastic rocks is observed immediately below the acoustic basement. The sediment isopach maps presented here for three major horizons are used to compute the 3-D sediment gravity effect to obtain a crustal Bouguer anomaly map of the region. Detailed analysis of the gravity and magnetic anomaly maps clearly demonstrates the continuity of ridge up to the Mahanadi coast at Chilka Lake. Seismically constrained gravity and magnetic models indicate that the ridge is composed of volcanic material that was emplaced on continental crust in the shelf-slope areas and over the oceanic crust in the deep offshore areas. The modeled crustal structure below the ridge further indicates volcanic emplacement of the ridge on a relatively younger lithosphere. We propose two alternative models for the emplacement of the ridge.  相似文献   

3.
In this paper, we investigate the upper crustal structure of the Irpinia region, Southern Apennines thrust belt, Italy, through analysis and joint interpretation of gravity data, seismic reflection lines and subsurface information from many deep wells. The investigated region includes the epicentral area of the 1980 (Ms=6.9) Irpinia earthquake and is one of the Italian regions with the highest seismic hazard. The upper crustal structure is imaged by modeling a series of 15 SW-trending gravity profiles, spaced about 5 km apart, plentifully constrained by seismic reflection lines and wells, thus reducing the inherent ambiguity of the gravity modeling. Despite of the complexity of the modeled Bouguer anomalies, the application of a calibrating procedure to constrain the range of variability of the density values, as well as the use of geometric constraints, results in a good level of stability in the final density cross-sections, which in fact appear coherent both in the density values and in the geometrical features. The inferred model shows important lateral density variations that can be mostly related to NW-trending geologic structures. High-density bodies delineate carbonate platform thrust sheets and broad antiforms involving Mesozoic basinal rocks, while low-density shallow bodies are associated with Pliocene basins. In addition, important density (i.e. lithological) variations are evident along the strike of the range, the most relevant being an abrupt deepening of the Apulia Carbonate Platform in the southeastern part of the investigated region. In the epicentral region of the 1980 event, we find that the geometry of the high-density, high-velocity carbonates of the Apulia Platform appears correlated with the distribution of the aftershocks and with the P-wave velocity anomaly pattern as inferred from a previous local earthquake tomography. The structural highs of the Apulia Platform correspond to high-velocity regions, where aftershocks and coseismic slip of the mainshock are concentrated. This correlation suggests that the Apulia Carbonate Platform geometry played an important role in the rupture propagation and in the aftershock distribution.  相似文献   

4.
This work considers the tectonics of the southeastern portion of the South American Platform based on new geological and geophysical grounds. For the last decade, only three (Amazonic, São Francisco and La Plata) of the many other cratonic blocks have been attributed/remarked to the South America portion for most of the usual Rodinia reconstitutions. The possibility of the existence of other blocks has rarely been mentioned. The postulation of the presence of a considerable Paleoproterozoic (pre-Brasiliano) fragment as part of Paraná Basin basement is highly probable. In order to infer the basement structure of Paraná Basin, previous to the sedimentation process, an isostatic modeling was applied to a large-scale gravity survey looking to correlate topographic and gravity anomalies caused by sub-surface loads. The Bouguer anomaly obtained from the gravity survey represents the crustal contribution of crystalline basement, in addition to the sedimentary and volcanic layers of the basin. Following the isostatic modeling and the basin load stripping, the residual anomaly allows observing similarities between the basement gravity signature and outcropping units. Besides, the stress pattern of the two earlier events obtained through the back stripping analysis presents a geographically coincident maximum, and a new E-SE high emerging for the second event, suggesting continuous change of the stress field as a precursor for South American plate rotation. The evident correlation between gravity highs and main attenuation suggests the presence of some pre-existing suture zones. The weakened lithosphere during Ordovician and Carboniferous provided the magma conduits to form in Early Cretaceous tectonic stress field pattern. The resultant mosaic of gravity blocks and the main faults site give support to the presence of this cratonic Proterozoic unit, here on referred to as the Paranapanema Block, which had been neglected in most of the models reported for the reconstruction of Gondwana (and Rodinia).  相似文献   

5.
A 2-D gravity model, incorporating geophysical and geological data, is presented for a 110 km long transect across the northern Rhine Graben, coinciding with the 92 km long DEKORP 9-N seismic reflection profile. The Upper Rhine Graben is marked by a prominent NNE-striking negative anomaly of 30–40 mgal on Bouguer gravity maps of SW Germany. Surface geological contacts, borehole data and the seismic reflection profile provide boundary constraints during forward modelling.
Short-wavelength (5–10 km) gravity features can be correlated with geologic structures in the upper few km. At deeper levels, the model reflects the asymmetry visible in the seismic profile; a thicker, mostly transparent lower crust in the west and a thinner, reflective lower crust in the east. From west to east Moho depth changes from 31 to 26–28 km. The entire 40 mgal minimum can be accounted for by the 2–3 km of light sedimentary fdl in the graben, which masks the gravitational effects of the elevated Moho. The thickened lower crust in the west partly compensates for the mass deficit from the depressed Moho. A further compensating feature is a relatively low density contrast at the crust-mantle boundary of 0.25 g cm-3. The Variscan must displays heterogeneity along the profile which cuts at an angle across the strike of Variscan structures. The asymmetry of the integrated crustal model, both at the surface and at depth suggests an asymmetric mechanism of rift development.  相似文献   

6.
An integrated interpretation of the seismic refraction and wide-angle reflection data, geological and structural details, bore-hole litholog information and gravity particulars along Beliator-Burdwan-Bangaon deep seismic sounding (DSS) profile in West Bengal basin has helped in getting a crustal density model. This model is consistent with all available surface and bore-hole geophysical data that can realistically explain the trend, shape and magnitude of gravity data across the West Bengal basin. The present exercise pointed out that the thick sedimentary column (with thickening trend towards east), conspicuous lateral variations in the Moho configuration (with a prominent 40 km wide domal feature covering the eastern part of the stable shelf and trie western segment of the deep basinal part) coupled with the structural trends in the basement, mid and lower crustal columns have combinedly contributed to the gravity effect and as such the prominent lateral variations in the Bouguer gravity anomalies could be mainly attributed to regionally extending causative factors. The synthesis clearly points out the need to take proper care in selecting the density values as direct conversion of velocities into densities, adapting well-known conversion formulae, does not always hold good specially in the eastern part of the West Bengal basin where a huge thickness of sediments (velocities ranging between 4 to 5 km/sec) of high density 2.6 to 2.8 g/cm3 are sandwiched between younger sediments and the crystalline basement.  相似文献   

7.
New deep reflection seismic, bathymetry, gravity and magnetic data have been acquired in a marine geophysical survey of the southern South China Sea, including the Dangerous Grounds, Northwest Borneo Trough and the Central Luconia Platform. The seismic and bathymetry data map the topography of shallow density interfaces, allowing the application of gravity modeling to delineate the thickness and composition of the deeper crustal layers. Many of the strongest gravity anomalies across the area are accounted for by the basement topography mapped in the seismic data, with substantial basement relief associated with major rift development. The total crustal thickness is however quite constant, with variations only between 25 and 30 km across the Central Luconia Platform and Dangerous Grounds. The Northwest Borneo Trough is underlain by thinned crust (25–20 km total crustal thickness) consistent with the substantial water depths. There is no evidence of any crustal suture associated with the trough, nor any evidence of relict oceanic crust beneath the trough. The crustal thinning also does not extend along the complete length of the trough, with crustal thicknesses of 25 km and more modeled on the most easterly lines to cross the trough. Modeled magnetic field variations are also consistent with the study area being underlain by continental crust, with the magnetic field variations well explained by irregular magnetisations consistent with inhomogeneous continental crust, terminating at the basement unconformity as mapped from the seismic data.  相似文献   

8.
The western Barents Sea and the Svalbard archipelago share a common history of Caledonian basement formation and subsequent sedimentary deposition. Rock formations from the period are accessible to field study on Svalbard, but studies of the near offshore areas rely on seismic data and shallowdrilling. Offshore mapping is reliable down to the Permian sequence, but multichannel reflection seismic data do not give a coherent picture of older stratigraphy. A survey of 10 Ocean Bottom Seismometer profiles was collected around Svalbard in 1998. Results show a highly variable thickness of pre-Permian sedimentary strata, and a heterogeneous crystalline crust tied to candidates for continental sutures or major thrust zones. The data shown in this paper establish that the observed gravity in some parts of the platform can be directly related to velocity variations in the crystalline crust, but not necessarily to basement or Moho depth. The results from three new models are incorporated with a previously published profile, to produce depth-to-basement and -Moho maps south of Svalbard. There is a 14 km deep basement located approximately below the gently structured Upper Paleozoic Sørkapp Basin, bordered by a 7 km deep basement high to the west, and 7–9 km depths to the north. Continental Moho-depth range from 28 to 35 km, the thickest crust is found near the island of Hopen, and in a NNW trending narrow crustal root located between 19°E and 20°E, the latter is interpreted as a relic of westward dipping Caledonian continental collision or major thrusting. There is also a basement high on this trend. Across this zone, there is an eastward increase in the VP, VP/VS ratio, and density, indicating a change towards a more mafic average crustal composition. The northward basement/Moho trend projects onto the Billefjorden Fault Zone (BFZ) on Spitsbergen. The eastern side of the BFZ correlates closely with coincident linear positive gravity and magnetic anomalies on western Ny Friesland, apparently originating from an antiform with high-grade metamorphic Caledonian terrane. A double linear magnetic anomaly appears on the BFZ trend south of Spitsbergen, sub-parallel to and located 10–50 km west of the crustal root. Based on this correlation, it is proposed that the suture or major thrust zone seen south of Svalbard correlates to the BFZ. The preservation of the relationship between the crustal suture, the crustal root, and upper mantle reflectivity, challenges the large-offset, post-collision sinistral transcurrent movement on the BFZ and other trends proposed in the literature. In particular, neither the wide-angle seismic data, nor conventional deep seismic reflection data south of Svalbard show clear signs of major lateral offsets, as seen in similar data around the British Isles.  相似文献   

9.
In 1977 the Federal Institute for Geosciences and Natural Resources, Hannover, carried out a large scale multichannel reflection seismic survey in the Labrador Sea. This survey provided an opportunity for the direct comparison of the geologic structure of the Labrador and Greenland margins. The seismic records across the Labrador Shelf show a thick, prograding sedimentary wedge consisting of several seismic sequences onlapping an acoustic basement that dips steeply seaward. The surface of the acoustic basement is irregular below the continental slope, indicating Late Cretaceous—Early Tertiary faulting. The thick sedimentary section below the slope is divided by an unconformity, tentatively identified as Late Tertiary in age, into two seismic megasequencies which can be subdivided. The acoustic basement on the Greenland side is also strongly faulted but is overlain, in the south, by a thin sedimentary section. The sediment cover thickens on the Greenland Shelf to the north as the shelf becomes wider.As with more southerly parts of the western Atlantic margin, a positive free-air anomaly (30–50 mgal) lies landward of the shelf break off Labrador and a smaller negative anomaly follows the base of the slope. Similar, but generally narrower features are observed along the Greenland margin. West of the negative anomaly off the Greenland slope a narrow band of lower amplitude positive anomalies tends to be associated with an acoustic basement high observed in the reflection profiles. A landward negative gradient in the simple Airy isostatic anomaly across this margin suggests that the ocean—continent boundary is related to this high.Detailed magnetic measurements across the northern Labrador margin show that well-developed oceanic anomalies trending north-northwest lie east of the large Labrador Shelf gravity high, beyond the 2000 m isobath. Landward of these magnetic anomalies is a quiet magnetic zone within which the linear gravity high is parallel to the shelf break and correlates with a deep, sediment-filled basin. It is inferred that oceanic-type crust or greatly-attenuated continental crust underlies this basin and that continental crust thickens markedly westward of the gravity high over a distance of about 50 km.  相似文献   

10.
松辽盆地是中国东北部中—新生代陆相沉积盆地,本文在深入分析东北地区古生代地层特征、沉积环境及构造演化基础之上,以过松科二井地区综合地球物理资料解译为基础,开展基底的属性和地球物理特征研究。松科二井南北剖面发现:布格重力异常具有中间高两边低的特点;磁异常呈现出与重力异常负相关的趋势;电性表现为浅部分层、高—低阻交叉重叠和深部分区的特征。东西剖面发现:布格重力异常具有西高东低的趋势;磁异常形态呈"碗状";电性结构与南北剖面相比深部出现了高阻异常。结合地球物理特征与岩相古地理分析,得到以下结论:(1)上古生界晚石炭世至晚二叠世期间,具有浅海相、陆相、河湖相多种沉积环境,相应岩性组合具有不同的物性特征;(2)重磁电地球物理特征揭示了研究区基底主要由泥砂岩、大理岩和侵入岩组成,基底顶面埋深位于7 km左右,上古生界和侵入岩共同组成了研究区基底;(3)识别出了滨州断裂带、孙吴—双辽断裂带、海伦—任民断裂带以及深层次断裂体系的位置和走向,断裂构造主要以SN和EW向为主,它们作为构成古生代构造骨架的重要组成部分,控制着深部油气运移和贮藏。  相似文献   

11.
The gravity and magnetic data along three profiles across the northern part of the K-G basin have been collected and the data is interpreted for basement depths. The first profile is taken from Gadarada to Yanam covering a distance of 60 km and the second starts from Zangareddiguddem to Samathkur covering a distance of 110 km and the third is from Kotturu to Biyyapuppa covering a distance of 100 km. The gravity lows and highs have clearly indicated various sub-basins and ridges. The density logs from ONGC, Chennai, show that the density contrast decreases with depth in the sedimentary basin, and hence, the gravity profiles are interpreted using variable density contrast with depth. From the Bouguer gravity anomaly, the residual anomaly is constructed by graphical method correlating with well data, sub-surface geology and seismic information. The residual anomaly profiles are interpreted using polygon model. The maximum depths to the khondalitic basement are obtained as 5.61km, 6.46 km and 7.45 km for the first, second and third profiles respectively. The regional anomaly is interpreted as Moho rise towards coast. The aeromagnetic anomaly profiles are also interpreted for charnockite basement below the khondalitic group of rocks using prismatic models.  相似文献   

12.
This study focuses on the basement structure of the Paraná Basin in South America, based on geological and geophysical data. It is a large intracratonic basin formed from the Late Ordovician until the Cretaceous,when a sequence of continentalflood basalts eruptions covered the entire basin, preceding the break-up of Western Gondwana. Isostatic modeling was applied to large gravity surveys comprising more than 12,000 gravity stations. The residual Bouguer anomaly pattern,representing the crustal contribution of the crystalline basement, as well as the sedimentary and volcanic layers of the basin, reveals similarities between the basement gravity signature and the exposed rock. The stress patterns of the Late Ordovician and Cretaceous tectonic events present a geographically coincident maximum,and the correlation between gravity highs and the main attenuation (beta factor) suggests the presence of some preexistent suture zones. The resultant mosaic of gravity blocks and the location of major faults give support to the presence of an important Proterozoic cratonic feature, here referred to as Paranapanema block.  相似文献   

13.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

14.
Marine geophysical data from the southern Natal Valley and northern Transkei Basin, offshore southeast Africa, were used to study the structure of the crust and sedimentary cover in the area. The data includes seismic reflection, gravity and magnetics and provides information on the acoustic basement geometry (where available), features of the sedimentary cover and the basin's development. Previously mapped Mesozoic magnetic anomalies over a part of the basin are now recognized over wider areas of the basin. The ability to extend the correlation to the southeast within the Natal Valley further confirms an oceanic origin for this region and provides an opportunity to amplify the existing plate boundary reconstructions.The stratigraphic structure of the southern Natal Valley and the northern Transkei Basin reflects processes of the ocean crust formation and subsequent evolution. The highly variable relief of the acoustic basement may relate to the crust formation in the immediate vicinity of the continental transform margin. Renewed submarine seismicity and neotectonic activity in the area is probably related to the diffuse boundary between the Nubia and Somalia plates.2.5-D crustal models show that a 1.7–3.2-km-thick sediment sequence overlies a 6.3±1.2-km-thick normal oceanic crust in the deep southern Natal Valley and Transkei Basin. The oceanic crust in the study area is heterogeneous, made up of blocks of laterally varying remanent magnetization (0.5–3.5 A/m) and density (2850–2900 kg/m3). Strong modifications of accretionary processes near ridge/fracture zone intersections may be a reason of such heterogeneity.  相似文献   

15.
用综合方法研究中国东部深部构造   总被引:1,自引:0,他引:1  
吴功建  高锐 《地球学报》1984,6(2):55-64
<正> 近年来在我国获得大量的地质、地球物理和地球化学等资料的基础上,特别是将地表地质构造的研究与深部地质构造和新构造运动的研究结合起来,更加深和丰富了对大地构造的认识。 1957年,地质部航测大队首次在我国东部发现了郯城—庐江深大断裂带。同时,大量的地球物理工作,为我国早期油田的勘探与开发提供了地质构造的依据。六十至七十年代,利用人工地震研究地壳和上地幔的结构,提出了部分地区的详细地壳模型和地壳厚度。在我国某些地区开始了古地磁学的研究。  相似文献   

16.
Approximately 39,000 km of marine gravity data collected during 1975 and 1976 have been integrated with U.S. Navy and other available data over the U.S. Atlantic continental margin between Florida and Maine to obtain a 10 mgal contour free-air gravity anomaly map. A maximum typically ranging from 0 to +70 mgal occurs along the edge of the shelf and Blake Plateau, while a minimum typically ranging from −20 to −80 mgal occurs along the base of the continental slope, except for a −140 mgal minimum at the base of the Blake Escarpment. Although the maximum and minimum free-air gravity values are strongly influenced by continental slope topography and by the abrupt change in crustal thickness across the margin, the peaks and troughs in the anomalies terminate abruptly at discrete transverse zones along the margin. These zones appear to mark major NW—SE fractures in the subsided continental margin and adjacent deep ocean basin, which separate the margin into a series of segmented basins and platforms. Rapid differential subsidence of crustal blocks on either side of these fractures during the early stages after separation of North America and Africa (Jurassic and Early Cretaceous) is inferred to be the cause of most of the gravity transitions along the length of margin. The major transverse zones are southeast of Charleston, east of Cape Hatteras, near Norfolk Canyon, off Delaware Bay, just south of Hudson Canyon and south of Cape Cod.Local Airy isostatic anomaly profiles (two-dimensional, without sediment corrections) were computed along eight multichannel seismic profiles. The isostatic anomaly values over major basins beneath the shelf and rise are generally between −10 and −30 mgal while those over the platform areas are typically 0 to +20 mgal. While a few isostatic anomaly profiles show local 10–20 mgal increases seaward of the East Coast Magnetic Anomaly (ECMA: inferred to mark the ocean-continent boundary), the lack of a consistent correlation indicates that the relationship of isostatic gravity anomalies to the magnetic anomalies and the ocean—continent transition is variable.Two-dimensional gravity models have been computed for two profiles off Cape Cod, Massachusetts and Cape May, New Jersey, where excellent reflection, refraction and magnetic control appear to define 10 and 12 km deep sedimentary basins beneath the shelf, respectively and 10 km deep basins beneath the rise. The basins are separated by a 6–8 km deep basement ridge which underlies the ECMA and appears to mark the landward edge of oceanic crust. The gravity models suggest that the oceanic crust is between 11 and 18 km thick beneath the ECMA, but decreases to a thickness of less than 8 km within the first 20–90 km to the southeast. In both profiles, the derived crustal thickness variations support the interpretation that the ECMA occurs over the ocean-continent boundary. The crust underlying the sedimentary cover appears to be 12 to 15 km thick on the landward side of the ECMA and gradually thickens to normal continental values of greater than 25 km within the first 60 to 110 km to the northwest. Multichannel seismic profiles across platform areas, such as Cape Hatteras and Cape Cod, indicate the ocean-continent transition zones there are much narrower than profiles across major sedimentary basins, such as the one off New Jersey.  相似文献   

17.
灵泉盆地布格重力异常特征表明灵泉盆地两侧重力低异常区主要为侏罗-白垩系断陷区,中部主要为基底隆起区.对布格重力异常进行向上延拓处理,结果发现深部地质体具有"东、西深,中间浅"分布特征;剩余重力异常也说明中部局部重力高主要反映基底隆起,东部和西部局部重力低主要反映侏罗-白垩系断陷.灵泉盆地基底断裂早期以北东向为主,晚期发育北西向断裂,区内还有早期近南北向和东西向断裂存在.将灵泉盆地构造单元划分为西部断陷区、中部隆起区和东部断陷区之后发现,灵泉盆地实际上是个相对隆起而不是断陷盆地,这是盆地发生构造反转作用的结果,额尔古纳地块上的其他中生代火山岩盆地普遍具有这种模式,额尔古纳地块中生代盆地基底总体上具有"南深北浅"的特点.   相似文献   

18.
Environmental managers and protection agencies try to assess the magnitudes of earthquakes in regions of seismic activity. For several decades they have used the seismic b-values and Bouguer anomalies for evaluating the crustal character and stress regimes. We have analyzed geostatistically data on both variables to map their spatial distributions in the southeast of the Zagros of Iran. We found a strong correlation between the distribution of the b-value and the Bouguer gravity anomaly in the region. The large Bouguer gravity anomaly values and small b-values all accord with there being a thinner crustal root and a larger concentration of stress in the center. The small to moderate Bouguer gravity anomaly values and intermediate to large b-values accord with the thicker crustal root and the smaller concentration of stress in the northeast. We conclude the southeast of the Zagros, consists of heterogeneous crust, such that accounts for its varied tectonics.  相似文献   

19.
庐枞火山岩盆地及其外围重、磁场特征   总被引:9,自引:5,他引:4  
为探测长江中下游成矿带庐江-枞阳白垩纪火山岩盆地的深部构造和地壳结构,2007年初在庐枞火山岩盆地进行了以深反射地震剖面探测为主的,新一轮重力、磁力和大地电磁剖面测量。作者在前人研究的基础上对庐枞火山岩盆地及其外围重、磁场特征进行了研究。作者首先分析长江中下游地区重、磁场的分布特征,然后以区域重、磁场特征为背景来认识庐枞地区重、磁场的分布特征。研究各类地质体的物性参数是开展地球物理解释的前提,文中收集并分析了前人对庐枞地区的岩石物性的较为系统研究成果。为了提取重、磁异常的特征,文中对重、磁异常进行了位场转换和图像处理。利用新的深反射地震剖面探测和大地电磁剖面研究成果,采用定性和定量解释方法对庐枞地区重、磁场的分布特征进行了研究并提出新的认识。庐枞火山岩盆地深部存在隐伏的磁性强的中碱性岩类是产生区域磁异常的主要原因。庐枞火山岩盆地下部火成岩所侵入的地层向盆地东南方向延伸,盆地的西北边界向东南方向倾斜。而在罗河断裂带以西没有火成岩存在。亦即庐枞火山岩盆地是一个沿北东向罗河断裂向东发育的非对称火山盆地。另外,在庐枞火山岩盆地西部边缘罗河深部存在切穿莫霍面的断裂带沿北东向延展数十千米。  相似文献   

20.
The key for understanding the dynamics of the Northeast German basin is the knowledge of its present-day structures. Our studies are focused on the complex geometry and evolution of this basin by the aid of numerical models. To support this task, it was necessary to consider and integrate all available geoscientific information. Based on borehole data, depth maps and on results of isostatic modelling we derived a 3D model of the basin structure. A smoothed map of the regional gravity field (after Grosse and Conrad, 1990) completed the data base. By means of 3D gravity modelling, the initial model structure was modified to fit in the geophysical data set.An important characteristic of the Northeast German Basin is the presence of Upper Permian Zechstein salt. The salt domes and walls related to the postdepositional mobilisation of the salt layer cause pronounced negative gravity anomalies. This effect is considered as a central problem in this study. In order to investigate possible causes of gravimetric anomalies, we studied the influence of different crustal depth levels. We applied a 3D gravity stripping approach to eliminate the gravimetric effects caused by sedimentary fill of the basin and to separate density anomalies within the sedimentary fill from the influence of deeper levels in the crystalline crust. Complementary, we calculated the downward continuation of the gravimetric field to the basin floor and compared the outcome with the results obtained by 3D stripping. The good fit between the calculated gravity anomalies and the measured anomalies confirms the applicability of the approach. Additionally, we interpreted the Bouguer anomalies in terms of crustal density distribution and discuss the model concerning its consistency with other geophysical data considering the first results of the seismic reflection experiment DEKORP BASIN96.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号