首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

2.
An algorithm of the ensemble pulsar time based on the optimal Wiener filtration method has been constructed. This algorithm allows the separation of the contributions to the post-fit pulsar timing residuals of the atomic clock and the pulsar itself. Filters were designed using the cross- and auto-covariance functions of the timing residuals. The method has been applied to the timing data of millisecond pulsars PSR B1855+09 and B1937+21 and allowed the filtering out of the atomic-scale component from the pulsar data. Direct comparison of the terrestrial time TT(BIPM06) and the ensemble pulsar time PTens revealed that the fractional instability of TT(BIPM06)−PTens is equal to  σ z = (0.8 ± 1.9) × 10−15  . Based on the  σ z   statistics of TT(BIPM06)−PTens, a new limit of the energy density of the gravitational wave background was calculated to be equal to  Ωg h 2∼ 3 × 10−9  .  相似文献   

3.
4.
5.
We present an empirical model for single pulses of radio emission from pulsars based on Gaussian probability distributions for relevant variables. The radiation at a specific pulse phase is represented as the superposition of radiation in two (approximately) orthogonally polarized modes (OPMs) from one or more subsources in the emission region of the pulsar. For each subsource, the polarization states are drawn randomly from statistical distributions, with the mean and the variance on the Poincaré sphere as free parameters. The intensity of one OPM is chosen from a lognormal distribution, and the intensity of the other OPM is assumed to be partially correlated, with the degree of correlation also chosen from a Gaussian distribution. The model is used to construct simulated data described in the same format as real data: distributions of the polarization of pulses on the Poincaré sphere and histograms of the intensity and other parameters. We concentrate on the interpretation of data for specific phases of PSR B0329+54 for which the OPMs are not orthogonal, with one well defined and the other spread out around an annulus on the Poincaré sphere at some phases. The results support the assumption that the radiation emerges in two OPMs with closely correlated intensities, and that in a statistical fraction of pulses one OPM is invisible.  相似文献   

6.
We investigate a stationary particle acceleration zone in the outer magnetosphere of an obliquely rotating neutron star. The charge depletion as a result of global current causes a large electric field along the magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate curvature gamma-rays, some of which collide with the X-rays to materialize as pairs in the gap. As a result of this pair-production cascade, the replenished charges partially screen the electric field, which is self-consistently solved together with the distribution of particles and gamma-rays. If no current is injected at either of the boundaries of the accelerator, the gap is located around the so-called null surface, where the local Goldreich–Julian charge density vanishes. However, we find that the gap position shifts outwards (or inwards) when particles are injected at the inner (or outer) boundary. We apply the theory to the seven pulsars whose X-ray fields are known from observations. We show that the gap should be located near to or outside of the null surface for the Vela pulsar and PSR B1951+32, so that their expected GeV spectrum may be consistent with observations. We then demonstrate that the intrinsically large TeV flux from the outer gap of PSR B0540–69 is absorbed by the magnetospheric infrared photons, causing it to be undetectable. We also point out that the electrodynamic structure and the resultant GeV emission properties of millisecond pulsars are similar to young pulsars.  相似文献   

7.
8.
We report on the discovery of three new pulsars in the first blind survey of the north Galactic plane  (45° < l < 135°; | b | < 1°)  with the Giant Meterwave Radio telescope (GMRT) at an intermediate frequency of 610 MHz. The survey covered 106 deg2 with a sensitivity of roughly 1 mJy to long-period pulsars (pulsars with period longer than 1 s). The three new pulsars have periods of 318, 933 and 1056 ms. Their timing parameters and flux densities, obtained in follow-up observations with the Lovell Telescope at Jodrell Bank and the GMRT, are presented. We also report on pulse nulling behaviour in one of the newly discovered pulsars, PSR J2208+5500.  相似文献   

9.
Seven giant radio pulses were recorded from the millisecond pulsar PSR B1937+21 during ≈8.1 min observation by the Ooty Radio Telescope (ORT) at 326.5 MHz. Although sparse, these observations support most of the giant pulse behaviour reported at higher radio frequencies (430 to 2380 MHz). Within the main component of the integrated profile, they are emitted only in a narrow (≲47 μs) window of pulse phase, close to its peak. This has important implications for doing super-high precision timing of PSR B1937+21 at low radio frequencies.  相似文献   

10.
In the previous paper of this series, Deshpande & Rankin reported results regarding the sub-pulse drift phenomenon in pulsar B0943+10 at 430 and 111 MHz. This study has led to the identification of a stable system of sub-beams circulating around the magnetic axis of this star. Here, we present a single-pulse analysis of our observations of this pulsar at 35 MHz. The fluctuation properties seen at this low frequency, as well as our independent estimates of the number of sub-beams required and their circulation time, agree remarkably well with the reported behaviour at higher frequencies. We use the 'cartographic' transform mapping technique developed by Deshpande & Rankin in Paper I to study the emission pattern in the polar region of this pulsar. The significance of our results in the context of radio emission mechanisms is also discussed.  相似文献   

11.
12.
13.
14.
We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 deg2 of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass  (>0.2 M)  companion. The long orbital period and small eccentricity  ( e = 0.0009)  make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607, which imply that its absolute visual magnitude is >12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection implies a cooling age of least 1 Gyr.  相似文献   

15.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

16.
Numerous studies of the brightest Cambridge pulsar, B1133+16, have revealed little order in its individual pulses, apart from a weak 30-odd-rotation-period fluctuation feature and that some 15 per cent of the star's pulsars are 'nulls'. New Arecibo observations confirm this fluctuation feature and that it modulates all the emission, not simply the 'saddle' region. By replacing each pulse with a scaled version of the average profile, we were able to quench all subpulse modulation and thereby demonstrate that the star's 'null' pulses exhibit a similar periodicity. A subbeam carousel model with a sparse and irregular 'beamlet' population appears to be compatible with these characteristics.  相似文献   

17.
18.
19.
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of  8 ±  2  mas yr−1. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of  46 ± 11   km s−1  , typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disc and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号