首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王楼煤矿目前正在开采3上煤层,主要水害为顶板水和采空区积水。顶板水主要水源为3煤顶部砂岩水及侏罗系砂砾岩水,其中侏罗系砂砾岩水是矿井防治水工作的主要对象。区内局部地段侏罗系砂砾岩含水层直接覆盖在煤层露头之上,成为3煤层开采的直接充水含水层。运用历年来的抽水试验成果及水位动态变化资料,对侏罗系含水层的水文地质特征进行了分析,并对断裂构造对含水层及矿井充水的影响进行了评价。结果表明:侏罗系下部砂砾岩段大部地区富水性弱-中等,是开采浅部煤层时矿井的主要补给水源之一;上侏罗统砂砾岩裂隙含水层与山西组3上煤层顶底板砂岩水存在较好的水力联系;在区内该含水层除二段上部富水性较弱外,其余的层段富水性均较强,主要接受上部岩浆岩含水层的补给;煤层开采造成的冒落裂隙带在局部地段影响到侏罗系含水层,从而使侏罗系含水层成为煤层开采的直接充水水源。  相似文献   

2.
李村煤矿为新建矿井,位于潞安矿区西部深埋区,计划开采山西组3号煤,矿井水害为煤层顶板砂岩裂隙水.在分析矿井水文地质条件的基础上,采用瞬变电磁探测成果,对3号煤顶板富水规律进行了研究,认为首采区的各含水层的富水区与构造相差程度高,且为片状分布,主要分布于两个较大倾斜构造和X7陷落柱及工业广场南部的陷落柱附近.采用富水系数法和解析法对井井底车场和首采工作面的涌水量进行了预测,认为富水系数法计算的涌水量成果较为可靠;利用承压含水层非稳定流定降深法对首采区1302工作面的涌水量进行了动态预测,发现顶板砂岩含水层是以疏干充水为特征.该研究对李村煤矿矿井建设及采区生产的防治水工作具有指导意义,同时对于山西潞安矿区西部煤层深埋区新建矿井排水系统及矿井防治水措施具有重要的参考作用.  相似文献   

3.
姚桥煤矿水文地质特征及矿井水害防治措施   总被引:1,自引:0,他引:1  
程萍荣 《中国煤田地质》2007,19(4):51-53,73
姚桥煤矿开采水文地质资料表明,煤层开采矿井的直接充水含水层--山西组煤层顶、底板砂岩裂隙含水层组与太原组灰岩岩溶裂隙含水层一般以静储量为主,富水性较弱;第四系松散含水层组、下石盒子组底部分界砂岩含水层、奥陶系灰岩岩溶裂隙含水层、老窑水主要是通过断裂或导水裂隙向矿井充水,故而提出了留设保安煤柱,探放断层水、老窑水等针对性的水害防治措施。  相似文献   

4.
鄂尔多斯盆地北部侏罗纪深埋区中生代地层以河流相沉积为主,呈分阶段的多旋回演化特点,导致煤层顶板含隔水层交替分布;由于地表大部分为毛乌素沙漠,降水入渗补给系数大,第四系松散层储水能力强,充足的补给水源造成煤层顶板直接充水含水层富水性较强,其中最主要的充水含水层为七里镇砂岩,以七里镇砂岩为关键层,将煤层至七里镇砂岩概化为一个直接充水含水层。承压水井大降深抽水时,当井中水位低于含水层顶板,井附近的含水层会出现无压水流区,形成承压–无压水井,采用分段法计算流向井的流量,包括无压水区和承压水区。实际工作面回采过程中,井中水位已降低至煤层底板;传统的承压–无压水井公式假设条件为井径较小(≤m级),而实际工作面回采过程中,随着覆岩导水裂隙带对七里镇砂岩关键充水含水层的破坏,导致整个煤层顶板形成巨大的采空区疏水井(102~103 m级),且该采空区疏水井半径逐渐增大,传统公式适用性不高。基于《地下水动力学》中的承压–无压水井公式,结合鄂尔多斯盆地北部深埋煤炭开采过程中采空区疏水井演化过程,建立适合于深埋区开采扰动下的采空区疏水井承压–无压水公式;以葫芦素煤矿首采工作面为研究对象,利用地质勘探和井下揭露获得的相关水文地质参数,计算葫芦素煤矿首采工作面回采过程中涌水量。结果表明:工作面回采初期,由于导水裂隙带未充分发育,尚未沟通七里镇砂岩,此阶段实际涌水量偏小;中后期导水裂隙带发育至七里镇砂岩,涌水量计算值与实际值较为接近,证明深埋煤层工作面涌水量计算公式可较准确地预测研究区工作面回采过程中的涌水量。本次建立的深埋工作面涌水量计算公式,广泛适用于我国西部侏罗纪煤田区,可为深埋煤田区煤炭资源安全开采提供科学的水害防治依据。   相似文献   

5.
吴堡矿区首采地段水文地质特征及矿床充水条件分析   总被引:1,自引:0,他引:1  
从鄂尔多斯盆地东部地下水类型、含水岩组等区域水文地质条件入手,对陕北石炭二叠纪煤田吴堡矿区首期开采地段水文地质条件进行了分析。分析表明,区内第四系松散层含水层在首采区虽然分别较广,但水量相对较小,正常情况下与其下含水层贯通的可能性较小,对于煤矿开采影响较小;基岩风化裂隙潜水、太原组灰岩溶隙裂隙及砂岩裂隙承压水及奥陶系灰岩岩溶承压水是煤矿开采中最为主要的突水类型。从矿坑充水水源、充水通道和充水强度角度对首期开采地段进行了矿床充水因素的研究。研究认为,矿井充水水源为煤层顶底板砂岩裂隙水、灰岩裂隙溶隙承压水及奥陶系岩溶承压水;充水通道主要是煤层开采后顶板形成的冒落带和导水裂隙带以及底板受其承压水的影响而产生的破坏带。建议在矿井设计前对首采地段进行三维地震勘探,进一步查明区内断层性质、规模和易发生矿井涌水的部位,为建井设计、矿坑底板的突水和防治提供依据。  相似文献   

6.
孙疃煤矿水文地质条件复杂,水害问题直接影响着煤炭资源的安全高效开采。基于水文地质背景资料,探讨了煤矿充水条件,并对煤矿涌水量的控制因素进行了系统分析。结果认为,属于新生界的松散层孔隙含水层、位于煤层之间的砂岩内裂隙含水层以及石灰岩岩溶-裂隙含水层是矿区的主要含水层。新生界的第四含水层,煤层顶底板砂岩裂隙含水层,灰岩岩溶-裂隙含水层以及老坑水是矿区充水的主要来源。地下水主要沿断层及构造裂隙、岩溶陷落柱、采动冒落带裂隙、底板受其承压水的影响而产生的破坏带裂隙等通道相矿井运移。煤矿月平均涌水量171.01m3/h,主要受煤层顶底砂岩裂隙富水性、断裂及构造裂隙以及采掘面积、煤产量和巷道掘进等开采因素影响,而大气降水、地表水受第四系更新统隔水层阻隔,与矿井涌水量没有关系。  相似文献   

7.
101采区位于煤矿的中部,拟采10煤层,区内抽水资料较少.在合理利用采区内、外各种水文地质资料基础上,通过对矿井水文地质边界条件的划分,充水水源、充水途径的分析,论述了采区的充水因素.研究认为,采区东部DF2.可视为采区补给边界;南、西、北分别被F14、WF4、F高-7断层切割,可视为隔水边界;10煤顶、底板砂岩裂隙含水层(段)是直接充水水源,富水性弱;新生界松散层第四含水层(组)是间接充水水源,富水性亦弱;太原组石灰岩岩溶裂隙含水层(段)是间接充水水源,富水性弱-中等;充水途径主要有构造裂隙、垮落带、导水裂缝带、断层及岩溶陷落柱以及未封闭好的钻孔等.该研究为采区涌水量计算、水害的防治及采区工作面的设计提供了较为可靠的地质资料.  相似文献   

8.
新密煤田在开采二1煤层时,矿井涌水量从每小时数立方米到上千立方米,差别极大,个别矿井因水量太大多年达不到设计开采能力。在研究矿区水文地质条件的基础上,分析了煤层的充水特征,认为煤层的顶板直接充水含水层是二叠系下统下石盒子组底部的砂岩裂隙水,底板直接充水含水层是石炭系太原组灰岩岩溶裂隙含水层,奥陶系岩溶裂隙含水层是煤层底板间接充水含水层;通常情况下顶板水不会对采煤构成威胁,灾害性突水主要来源于煤层底板;石炭系灰岩含水层与奥陶系灰岩含水层水力联系较密切,通常矿井大的涌水都有奥陶系灰岩水参与;大隗断层使得区内寒武系中上统灰岩直接与二叠系石千峰组砂、页岩接触,隔断了南北两侧的水力联系,并将矿区分割为两个水文地质亚区;矿井在开采深度在+50m标高以上时,充水水源主要来源于煤层顶板,底板无水,在开采深度在+50m以下时,矿井涌水量相对较大,随着开采深度的增加,矿井涌水量有逐渐减小的趋势。该研究对确定矿井充水因素,进行突水预防具有指导和借鉴意义  相似文献   

9.
通过对河南省汝州市庇山煤矿区的水文地质条件分析,认为矿井主要充水水源为上部老窑积水、第四系孔隙水、砂岩裂隙水及灰岩岩溶裂隙水.除第四系松散孔隙含水层富水性较强外,其它各含水层富水性均较弱,对井下煤层开采威胁不大,老窑积水是构成上部煤层开采充水的主要因素,充水通道为采空塌陷带及构造断裂带.建议开展水文地质物探工作,为矿井防治水提供参考依据.  相似文献   

10.
通过对黄陵二号煤矿充水因素的分析,结合矿井实际涌水量,认为矿井在开采延安组2号煤层时,延安组中部含水层为矿井的直接充水含水层,直罗组下段含水层为矿井主要的间接充水含水层;上部的洛河组砂岩水是矿井井筒充水的主要水源,也是矿井充水的间接充水含水层;矿井的主要充水通道为开采沉陷裂隙,充水方式为顶板进水。最后指出,该矿井开采2号煤层的最大隐患是直罗组下段砂岩顶板突水和井筒洛河组砂岩涌水。  相似文献   

11.
为有效控制煤层底板带压开采突水发生,同时解决突水系数法评价底板突水的局限性,引入灰色模糊聚类法综合评价煤层底板突水危险性。以袁店煤矿101、102采区为例,通过对10煤层水文地质条件、底板充水水源和充水通道深入分析,提取评价煤层底板突水危险性关键指标,综合考虑岩溶裂隙发育、地质构造、隔水层厚度、裂隙含水层富水性、灰岩含水层厚度5个突水主控因素,并进行底板突水危险性分区。结果表明:101采区底板突水危险性较小,102采区危险性较大。建议对102采区局部富水地段进行注浆加固,以达到防治突水的目的。  相似文献   

12.
鹤岗矿区新陆煤矿主要充水含水层为白垩系石头庙子组砾岩裂隙含水层与石头河子组砂岩裂隙含水层,石头庙子组含水层富水性强,石头河子组含水层距离可采煤层较近,两含水层均为煤层顶板直接充水含水层,若发生水力联系,将会严重威胁煤矿开采。在分析矿井水文地质条件的基础上,从水化学特征、水位、隔水层、断层影响区地面瞬变电磁特征等方面对两含水层特征进行综合对比分析,得出了两含水层一般区域水力联系弱,在断层影响区域水力联系相对强的规律,为煤矿防治水工作提供了重要参考依据。  相似文献   

13.
通过对井田边界条件、主要含水层的富水特征、断层的水文地质特征以及地下水的补给、径流及排泄条件的分析研究,认为二1煤层顶板的直接充水水源为顶板砂岩裂隙水,底板的直接充水水源为石炭系太原组上段石灰岩岩溶裂隙水,底板的间接充水水源为石炭系下段太原组灰岩岩溶裂隙水和寒武系白云质灰岩岩溶裂隙水;矿井充水通道为顶板砂岩、底板灰岩的裂隙和断层带。采用大井法对先期开采地段二1煤层-700m水平的矿井涌水量进行了预算:正常涌水量为947m^3/d,最大涌水量为1140m^3/d。结合邻近矿井的调查,认为计算的涌水量是可靠的,可作为煤矿建井设计和水害防治的依据。  相似文献   

14.
在全面分析大雁矿业集团公司雁南煤矿北二采区的水文地质条件及煤层开采矿井充水因素的基础上,计算了开采27^1号煤层时导水裂隙带发育高度.得出了北二采区各煤层工作面开采即不会受到上部砂砾含水层的影响,雁南煤矿铁路涵洞以西的胜利河冲击沟也不会受到北二采区的采动塌陷影响的结论。  相似文献   

15.
《四川地质学报》2022,(2):287-291
代池坝煤矿进入深部开采,通过对矿区深部水文地质条件研究与矿井充水因素分析,认为矿床充水含水层为富水性弱等的砂岩裂隙含水层,各含水层间水力联系差,深部开采面临含水层地下水水压变大,具有一定的危险性。矿井主要充水水源为大气降水、含水层砂岩裂隙水、地表水和采空区积水。矿区主要充水通道是煤层开采后形成的导水裂缝带和矿区范围内11个报废钻孔。采用了比拟法的计算:深部标高+320中等的砂岩裂隙含水层,各含水层间水力联系差,深部开采面临含水层地下水水压变大,具有一定的危险性。矿井主要充水水源为大气降水、含水层砂岩裂隙水、地表水和采空区积水。矿区主要充水通道是煤层开采后形成的导水裂缝带和矿区范围内11个报废钻孔。采用了比拟法的计算:深部标高+320+50m范围内正常涌水量为234m+50m范围内正常涌水量为234m3/h,最大涌水量为509m3/h,最大涌水量为509m3/h。  相似文献   

16.
112201工作面是梅花井煤矿首采工作面,位于矿井南端浅部,切眼靠近鸳鸯湖背斜轴部。工作面涌水量从2009年4月份开始回采时的15m3/h,增至2010年3月份的230m3/h。工作面的突然涌水导致大量淋水,从而使采区底板严重泥化,给矿井安全生产带来巨大威胁。分析认为,工作面的主要充水水源为2-1煤的顶板含水层(七里镇砂岩),主要通道为顶板的采动裂隙带。通过实施探放水和疏放水工程,工作面下隅角的涌水量由180m3/h降至30m3/h以内,极大的减少了含水层突然涌水对工作面的危害,为梅花井乃至鸳鸯湖矿区防治水工作起到了积极作用。  相似文献   

17.
代池坝煤矿进入深部开采,通过对矿区深部水文地质条件研究与矿井充水因素分析,认为矿床充水含水层为富水性弱~中等的砂岩裂隙含水层,各含水层间水力联系差,深部开采面临含水层地下水水压变大,具有一定的危险性。矿井主要充水水源为大气降水、含水层砂岩裂隙水、地表水和采空区积水。矿区主要充水通道是煤层开采后形成的导水裂缝带和矿区范围内11个报废钻孔。采用了比拟法的计算:深部标高+320~+50m范围内正常涌水量为234m~3/h,最大涌水量为509m~3/h。  相似文献   

18.
青龙寺井田位于陕北侏罗纪煤田神府矿区新民开采区中部,地质构造简单,主要可采煤层为延安组3^-1和5^-2煤层。井田主要含水层为第四系冲积层孔隙潜水、侏罗系延安组裂隙承压水和烧变岩空洞裂隙潜水。含水层主要接受大气降雨的入渗补给,补给量较小,因而富水性较弱。分析认为:未来矿井开采时的主要充水通道为煤层采空区顶板冒落形成的导水裂隙带,充水强度与大气降雨关系密切,在暴雨或持续降雨、渗透条件较好时,充水量大,其余时段和层段的充水量较小;开采5^-2煤层时对顶板砂岩水应以疏放为主。  相似文献   

19.
济宁三号煤矿目前开采的煤层为上组煤的3煤(3上、3下煤),自投产以来,发生多次涌水,如13下01综放面侏罗系底部含水层最大涌水量达533.84m3/h,63下01综放3煤顶板砂岩最大涌水量527m3/h,曾一度出现工作面局部被淹而导致停产,对矿井的安全高效生产构成了极大的威胁。在综合分析研究上组煤顶板各含水层的水文地质特征和充水条件的基础上,认为上组煤(3上、3下煤)开采时的直接充水水源为3煤顶板砂岩含水层;间接充水水源是侏罗系含水层水以及局部地区对侏罗系含水层起补给作用的第四系含水层;部分地区侏罗系含水层被采动裂隙导通而成为直接充水水源,大部分地段第四系底部均为粘土,有效的阻隔了第四系与下伏侏罗系含水层的水力联系,对下伏含水层补给微弱;充水通道主要有断层、采动裂隙、封闭不良钻孔和破坏的井筒。为指导下一步煤矿生产预防水害事故提供了依据。  相似文献   

20.
朔里煤矿62采区为下山采区,位于黄湾向斜之W翼。向斜轴部裂隙发育,为一良好的聚水场所。对生产有影响的含水层为6煤层顶板砂岩含水层及底板太原群(C3t)灰岩含水层。顶板砂岩含水层,虽然在老顶初放期间会对工作面的正常回采带来一定影响。但由于水量以静储量为主,涌水量有限,构不成水害威胁。而底板(C3t)灰岩水因有良好的补给来源,为威胁6煤层安全回采的主要含水层。62采区主要含水层叙述如下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号