首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water quality in Biscayne Bay has been significantly affected by past and continuing coastal and watershed development. The nutrient concentrations in the Bay have been dramatically changed by the conversion of natural creeks and sheet flow freshwater inputs to rapid and episodic canal inputs from the large and rapidly expanding Miami metropolitan area. This study is an evaluation of nutrient loadings to Biscayne Bay for 1994-2002 from canal, atmospheric, and groundwater sources. Dissolved inorganic nitrogen (DIN, as nitrate, nitrite, and ammonium) and total phosphorus (TP) loadings by the canals were influenced by their geographic locations relative to discharge amount, watershed land use, stormwater runoff, and proximity to landfills. Annual budgets showed that canals contributed the bulk of N loading to the bay as 1687.2 metric ton N yr(-1) (88% total load). Direct atmospheric DIN load for Biscayne Bay was only 231.7 ton N yr(-1), based on surface area. Of the canal DIN load, nitrate+nitrite (NO(x)(-)) loading (1294.5 ton N yr(-1)) made up a much greater proportion than that of ammonium (NH(4)(+), 392.6 ton N yr(-1)). In the urbanized north and central Bay, canal DIN load was evenly split between NO(x)(-) and NH(4)(+). However, in the south, 95% of the DIN load was in the form of NO(x)(-), reflecting the more agricultural land use. Contrary to N, canals contributed the only 66% of P load to the bay (27.5 ton P yr(-1)). Atmospheric TP load was 14 ton Pyr(-1). In the north, canal P load dominated the budget while in the south, atmospheric load was almost double canal load. Groundwater inputs, estimated only for the south Bay, represented an important source of N and P in this zone. Groundwater input of N (141 ton N yr(-1)) was about equal to atmospheric load, while P load (5.9 ton P yr(-1)) was about equal to canal load.  相似文献   

2.
A method, utilising overlaid graphs for nutrients vs salinity, was developed in order to determine which nutrient is limiting for plant growth in estuarine waters-at any salinity. Dissolved inorganic nitrogen (DIN=NO(3)(-)+NO(2)(-)+NH(4)(+)) and o-phosphate (PO(4)(-)) are the main forms of N and P that are readily bio-available for plant growth in waters and these have a Redfield atomic ratio of N:P=16:1 (i.e. aquatic plants absorb N and P in the average ratio of 16 atoms of N to 1 atom of P). Graphs are prepared for (i) DIN vs salinity and (ii) o-phosphate vs salinity with the vertical scales for DIN and o-phosphate set at a ratio of N:P=16:1; when these graphs are overlaid on each other then the lowermost trendline denotes the limiting nutrient for plant/algal growth-at any salinity. The graphs also indicate the extent by which one or other of the nutrients is limiting--at any salinity. Furthermore, if there is a transition from P to N limitation somewhere along the salinity gradient, then this occurs at the salinity where the trendlines intersect. The concept was applied to three estuaries in the southeast of Ireland and the results show that, in all of these circumstances, P is the limiting nutrient throughout--except for the higher salinities (i.e. salinities 30 per thousand), where either (i) N and P may become equally limiting at salinity approximately 35 per thousand or (ii) N may become limiting at salinity 30 per thousand. Overlaid nutrients vs salinity graphs were also used to demonstrate that, in the estuaries in southeast Ireland, carbon (as dissolved inorganic carbon, DIC=CO(2)+H(2)CO(3)+HCO(3)(-)+CO(3)(2-)) is not the limiting nutrient--at any salinity.  相似文献   

3.
We measured dissolved N(2)O, CH(4), O(2), NH(4)(+), NO(3)(-) and NO(2)(-) on 7 transects along the polluted Adyar River-estuary, SE India and estimated N(2)O and CH(4) emissions using a gas exchange relation and a floating chamber. High NO(2)(-) implied some nitrification of a large anthropogenic NH(4)(+) pool. In the lower catchment CH(4) was maximal (6.3+/-4.3 x 10(4)nM), exceeding the ebullition threshold, whereas strong undersaturation of N(2)O and O(2) implied intense denitrification. Emissions fluxes for the whole Adyar system approximately 2.5 x 10(8) g CH(4)yr(-1) and approximately 2.4 x 10(6)gN(2)O yr(-1) estimated with a gas exchange relation and approximately 2 x 10(9) g CH(4)yr(-1) derived with a floating chamber illustrate the importance of CH(4) ebullition. An equivalent CO(2) flux approximately 1-10 x 10(10)gy r(-1) derived using global warming potentials is equivalent to total Chennai motor vehicle CO(2) emissions in one month. Studies such as this may inform more effective waste management and future compliance with international emissions agreements.  相似文献   

4.
Primary production in the Northern San Francisco Estuary (SFE) has been declining despite heavy loading of anthropogenic nutrients. The inorganic nitrogen (N) loading comes primarily from municipal wastewater treatment plant (WTP) discharge as ammonium (NH(4)). This study investigated the consequences for river and estuarine phytoplankton of the daily discharge of 15 metric tons NH(4)-N into the Sacramento River that feeds the SFE. Consistent patterns of nutrients and phytoplankton responses were observed during two 150-km transects made in spring 2009. Phytoplankton N productivity shifted from NO(3) use upstream of the WTP to productivity based entirely upon NH(4) downstream. Phytoplankton NH(4) uptake declined downstream of the WTP as NH(4) concentrations increased, suggesting NH(4) inhibition. The reduced total N uptake downstream of the WTP was accompanied by a 60% decline in primary production. These findings indicate that increased anthropogenic NH(4) may decrease estuarine primary production and increase export of NH(4) to the coastal ocean.  相似文献   

5.
Chemical compositions of Coscinodiscus wailesii were determined for four samples of natural cells. Results revealed that the cellular Si:N ratio of C. wailesii cell was 2.4:1.0-5.2:1.0. The impacts of C. wailesii on surrounding coastal water were evaluated from hydrographic observations, in which C. wailesii cell density, nutrients concentrations and temperature were monitored from November 2001 to February 2005 in Harima-Nada, the Seto Inland Sea, Japan. In low temperature periods, from October to December, two peaks of C. wailesii cell density were observed and nutrient concentrations were depleted. The draw-down ratio of Si(OH)(4) and DIN (Si(OH)(4):DIN ratio) in the water column were similar to the cellular Si:N ratio of C. wailesii cells, which have high Si contents. In addition the effects of different Si(OH)(4):DIN ratio were determined for in situ bottle incubation experiments. In the culture experiments, picoplankton (0.2-2.0 microm) which consisted of small flagellates became dominant under low Si(OH)(4):DIN ratios. These results suggested that the sizes distribution shifted to small size and the phytoplankton community was changed to small flagellates after the C. wailesii bloom. These changes would influence predators at higher trophic levels in its coastal ecosystem.  相似文献   

6.
大气湿沉降向太湖水生生态系统输送氮的初步估算   总被引:30,自引:3,他引:27  
测定和分析了2002年7月至2003年6月太湖周边地区太湖站、拖山岛、东山站、无锡、苏州、湖州、常州等7个站点大气降水化学组成,计算了水气界面TN、NH4 -N、NO3--N、T1N、TON的湿沉降率。结果表明,大气降水的TN浓度变化范围为2.06±0.30(常州)-3.71±0.43(拖山岛),太湖流域大气降水已呈富营养化水质的特征;大气降水TN、NH4 -N、NO3--N、TIN、TON的年均湿沉降率分别为2806.75kg/km2、1458.81kg/km2、631.67kg/km2、2090.48kg/km2和716.28kg/km2;每年由湿沉降直接进入太湖水体的TN约为6562.2t,NH4 -N为3410.7t,NO3--N为1476.8t,TIN为4887.5t,TON为1674.7t;TN占入湖河道年输入污染物总量的13.6%.大气湿沉降中,TIN对TN的贡献比较大,平均约占TN的78.78%.TIN的湿沉降率具有季节性分布,夏季高,春季次之,冬秋季低。这种现象无疑对太湖水体的蓝藻爆发和富营养化具有潜在的促进作用.  相似文献   

7.
Natural attenuation of septic system nitrogen by anammox   总被引:1,自引:0,他引:1  
On-site disposal of sewage in septic systems can lead to groundwater plumes with NO(3)(-)-N concentrations exceeding the common drinking water limit of 10 mg/L. Currently, denitrification is considered as the principal natural attenuation process. However, at a large seasonal-use septic system in Ontario (256 campsites), a suboxic zone exists where nitrogen removal of up to 80% occurs including removal of NH(4)(+)-N. This zone has both NO(3)(-)-N and NH(4)(+)-N at >5 mg/L each. In the distal NH(4)(+)-rich zone, NH(4)(+)-N concentrations (8.1 ± 8.0 mg/L) are lower than in the proximal zone (48 ± 36 mg/L) and NH(4)(+)-N is isotopically enriched (concentration-weighted mean δ(15)N of +15.7‰) compared to the proximal zone (+7.8‰). Furthermore, δ(15)N-NH(4)(+) isotopic enrichment increases with depth in the distal zone, which is opposite to what would result if nitrification along the water table zone was the mechanism causing NH(4)(+) depletion. Bacterial community composition was assessed with molecular (DNA-based) analysis and demonstrated that groundwater bacterial populations were predominantly composed of bacteria from two Candidatus genera of the Planctomycetales (Brocadia and Jettenia). Together, these data provide strong evidence that anaerobic ammonium oxidation (anammox) plays an important role in nitrogen attenuation at this site.  相似文献   

8.
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1-2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May-October) than the dry season (November-April). Dissolved inorganic nitrogen (DIN=NO3+NO2+NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m(-2) d(-1), respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

9.
The aim of this study was to quantify the N removal efficiency of an Ulva-based phytotreatment system receiving wastewaters from a land-based fish farm (Orbetello, Italy), to identify the main biogeochemical pathways involved and to provide basic guidelines for treatment implementation and management. Fluxes of O2 and nutrients in bare and in Ulva colonised sediments were assessed by light/dark core incubations; denitrification by the isotope pairing technique and Ulva growth by in situ incubation of macroalgal disks in cages. O2 and nutrient budgets were estimated as sum of individual processes and further verified by 24-h investigations of overall inlet and outlet loads. Ulva uptake (up to 7.8 mmol Nm(-2) h(-1)) represented a net sink for water column and regenerated NH4+ whilst N removal via denitrification (10-170 micromol Nm(-2) h(-1)) accounted for a small percentage of inorganic nitrogen load (<5%). Laboratory experiments demonstrated a high potential for denitrification (over 800 microM Nm(-2) h(-1)) indicating that N loss could be enhanced. The control of Ulva standing stocks by optimised harvesting of surplus biomass may represent an effective strategy to maximise DIN removal and could result in the assimilation of approximately 50% of produced inorganic nitrogen.  相似文献   

10.
In the spring of 1998, 24-h time series and synchronization of vertical profiles of NO(3)-N, NO(2)-N, NH(3)-N, PO(4)-P, chlorophyll a, suspended substance, salinity, temperature and other chemical parameters were taken at 10 stations in the Pearl River estuary in order to analyze the status and characteristics of nutrients and eutrophication. The results indicated that dissolved inorganic nitrogen (DIN) mainly came from the four river channels in the main estuary, and NO(3)-N was the main form of DIN in most area. The concentration of DIN was general above 0.30 mg l(-1) in the estuary, and more than 0.50 mgl(-1) in most part. Phosphate from four river channels was not the main sources, but land-based sources from the area near Shenzhen Bay or along the estuary were obvious, and other land-based sources outside the estuary brought by coastal current and flood tide current were also the main contributions. The concentration of phosphate was generally about 0.015 mg l(-1) except the area near Shenzhen Bay. The ratio of N:P was generally high, and it was higher in the north than in the south. The highest ratio was higher than 300, and the lowest one was over 30. The concentration of chlorophyll a was about 0.8-7.8 mg m(-3), and turbidity and phosphate may be the main two limiting factors for algal bloom in the estuary. The concentration of nutrients decreased slightly in the past decade, but still stayed at a high level. The nutrients mainly came from domestic sewage, industrial wastewater, agriculture fertilizer and marine culture in the Pearl River estuary.  相似文献   

11.
Dredging is a large-scale anthropogenic disturbance agent in coastal and estuarine habitats that can profoundly affect water quality. We examined the impact of a small-scale dredging operation in a salt marsh in South Carolina by comparing nutrient levels (NH(4)(+), NO(x), PO(4)(-)) and total suspended solid concentrations before and during dredging activities. Nutrient enrichment was evaluated within the context of tidal, seasonal, and inter-annual variability by using long-term water chemistry data provided by the North Inlet-Winyah Bay National Estuarine Research Reserve. The conditions of the dredging permit (i.e., its relatively small scale), the season chosen for the work (fall-winter), the nature of the sediments dredged (coarse-grained), and the amount of natural variability in the estuary's water chemistry (even on a daily time-scale) all minimized the impact of the dredging activities. Results of this study will add to the limited body of empirical data that should be considered in evaluating future dredging permit applications related to shallow estuarine waterways.  相似文献   

12.
Fluxes of dissolved inorganic nutrients: NH4+, NO2-, NO3-, PO4(3-) and Si(OH)4 from nearshore sediments of Gazi Bay were measured in situ within mangrove, seagrass and coral reef biotopes using benthic flux bell-jar chambers of cross-sectional area 0.066 m2 and volume 0.0132 m3. The objectives were: (1) to determine the influence of benthic fluxes, fluvial discharge and seasonal variations on the nutrient budget in the Bay waters; (2) to determine the effect of tidal and spatial variations on nutrient loads in the water column and (3) to establish the relative importance of the nutrient sources with regard to total community production of the Bay. The directly measured fluxes ranged from -270 to +148 micromol NH4+-N/m2/h; -60 to +63 micromol NO2(-)-N/m2/h; -79 to +41 micromol NO3(-)-N/m2/h; -79 to +75 micromol PO4(3-)-P/m2/h and +30 to +350 micromol Si(OH)4-Si/m2/h for and respectively. It was established that benthic fluxes are the major sources of dissolved inorganic NH4+, NO2- and Si(OH)4 while fluvial sources are important for NO3- and PO4(3-) into Gazi Bay waters. Seasonal variations had an appreciable effect on the PO4(3-) fluxes, N:Si ratio, river nutrient discharge, plankton productivity and important environmental factors such as salinity and temperature. Tidal and spatial variations had no significant effect on nutrient concentrations and net fluxes within the water column. The results imply that benthic fluxes are largely responsible for the nutrient dynamics of the nearshore coastal ecosystems especially where direct terrestrial inputs do not contribute significantly to the nutrient budget.  相似文献   

13.
Mean dissolved inorganic nitrogen concentrations ([DIN]) in deep, seasonally stratified lakes with comparable DIN inputs can differ by up to a factor of 3 depending on hydraulic and morphometric properties and/or different trophic states of the lakes. In such lakes, net N sedimentation rates were estimated with two independent methods (sediment core analysis and input-output mass balances). They were higher in eutrophic lakes (Mean: 5.1; SD: ± 1.6 g m–2 yr–1; n = 13) than in oligotrophic lakes (1.6 ± 1.0 g m–2 yr–1; n = 3), but independent of [DIN]. Gaseous N loss rates to the atmosphere, as calculated from combined N- and P-mass balances from selected lakes, ranged from 0.9 to 37.4 g m–2 yr–1 (n = 10) and were positively correlated with [DIN]. Reduction of NO 3 - to N2 is assumed to be the main cause for gaseous N losses. A simple one-box mass balance model for [DIN], based on DIN input and rates and kinetics of N removal processes (net sedimentation and gaseous N loss) is proposed, and validated with a data base on [DIN] and DIN input in 19 deep, seasonally stratified lakes of central Europe. The model illustrated that the amount of water loading per unit surface area of a lake (called water discharge height q) is the critical parameter determining mean lake [DIN] relative to mean input [DIN]. Lakes with a q > 50 m yr–1 have average [DIN] similar to the [DIN] of the inflows regardless of their trophic states, because input and outflow exceed lake-internal N removal processes. A high primary production favors DIN removal in lakes with q < 50 m yr–1. It is concluded that measures to decrease primary production, e.g. by means of P removal programs, lead to an increase of [DIN] in lakes.  相似文献   

14.
好氧和厌氧条件对霞浦湖沉积物-水界面氮磷交换的影响   总被引:59,自引:4,他引:55  
在实验室控制条件下,研究了日本霞浦湾和湖心区底泥中形态氮磷,在好氧和厌氧条件下水土界面交换量变化及差异,结果表明;好氧条件下,NO^-3-N,NO^-2-N,NH^+4,-N,和PO^3-4-P均有释放作用产生,量值多数较小,DTN和DTP则净释放作用接近零;厌氧条件下,NO^-3-N和NO^-2-N呈负释放状态,NH^+4-N和PO^3-4-P的释放速率是好氧条件下的2-8倍。  相似文献   

15.
Lake Bonney, a permanently ice-covered Antarctic lake, has a middepth maximum N2O concentration of 41.6 micromoles N (>580,000% saturation with respect to the global average mixing ratio of N2O) in its east lobe, representing the highest level yet reported for a natural aquatic system. Atmospheric N2O over the lake was 45% above the global average, indicating that this lake is an atmospheric source of N2O. Apparent N2O production (ANP) was correlated with apparent oxygen utilization (AOU), and denitrification was not detectable, implying that nitrification is the primary source for this gas. The slope of a regression of ANP on AOU revealed that potential N2O production per unit of potential O2 consumed in the east lobe of Lake Bonney is at least two orders of magnitude greater than reported for the ocean. The maximum yield ratio for N2O [ANP/(NO2(-) + NO3-)] in Lake Bonney is 26% (i.e. 1 atom of N appears in N2O for every 3.9 atoms appearing in oxidized N), which exceeds previous reports for pelagic systems, being similar to values from reduced sediments. Areal N2O flux from the lake to the atmosphere is >200 times the areal flux reported for oceanic systems; most of this gas apparently enters the atmosphere through a small moat that occupies approximately 3% of the surface of the lake and exists for approximately 10 weeks in summer.  相似文献   

16.
Denitrification (as N(2) flux) and organic matter mineralization (as O(2) uptake) were simultaneously measured in the same set of core sediments from a natural sandy and a constructed muddy tidal flat of Ago Bay, Japan. Denitrification rates at both tidal flats fluctuated between ca. 2-20 micromol N(2)m(-2)h(-1) without showing a clear seasonal pattern, and appeared to be substrate limited as NO(3)(-) enrichment (final concentration ca. 225 microM) caused prompt and similar enhancements of ca. 10-folds. Organic matter mineralization rates were markedly higher at constructed muddy flat compared to those of natural sandy flat, especially in summer, and exhibited pronounced temperature dependent (p<0.01) seasonality for both tidal flats. O(2) uptake rates were generally ca. 2-3 order greater than respective denitrification rates indicating dominance of mineralization processes over N(2) losses.  相似文献   

17.
以太湖梅梁湾1992-1999年的连续监测资料为基础,运用多元逐步回归统计方法,选择水温等15项环境理化因素与藻类叶绿素a、藻类总生物量和微囊藻生物量等3项生物因素进行逐步回归分析,找出与生物因素显著相关的环境因子,建立多元逐步回归方程,预测梅梁湾藻类生物量的变化情况,初步进行了梅梁湾蓝藻水华的预测预报,结果显示,水温和总磷为梅梁湾藻类总生物量的显著相关因子,水温、硝态氮和总氮为微囊藻一物量的显著相关因子。  相似文献   

18.
Because of the ubiquitous nature of anthropogenic nitrate (NO3(-)) in many parts of the world, determining background concentrations of NO3(-) in shallow ground water from natural sources is probably impossible in most environments. Present-day background must now include diffuse sources of NO3(-) such as disruption of soils and oxidation of organic matter, and atmospheric inputs from products of combustion and evaporation of ammonia from fertilizer and livestock waste. Anomalies can be defined as NO3(-) derived from nitrogen (N) inputs to the environment from anthropogenic activities, including synthetic fertilizers, livestock waste, and septic effluent. Cumulative probability graphs were used to identify threshold concentrations separating background and anomalous NO(3)-N concentrations and to assist in the determination of sources of N contamination for 232 spring water samples and 200 well water samples from karst aquifers. Thresholds were 0.4, 2.5, and 6.7 mg/L for spring water samples, and 0.1, 2.1, and 17 mg/L for well water samples. The 0.4 and 0.1 mg/L values are assumed to represent thresholds for present-day precipitation. Thresholds at 2.5 and 2.1 mg/L are interpreted to represent present-day background concentrations of NO(3)-N. The population of spring water samples with concentrations between 2.5 and 6.7 mg/L represents an amalgam of all sources of NO3(-) in the ground water basins that feed each spring; concentrations > 6.7 mg/L were typically samples collected soon after springtime application of synthetic fertilizer. The 17 mg/L threshold (adjusted to 15 mg/L) for well water samples is interpreted as the level above which livestock wastes dominate the N sources.  相似文献   

19.
Various chemometric methods were used to analyze data sets of marine water quality for 19 parameters measured at 16 different sites of southern Hong Kong from 2000 to 2004 (18,240 observations), to determine temporal and spatial variations in marine water quality and identify pollution sources. Hierarchical cluster analysis (CA) grouped the 12 months into three periods (January-April, May-August and September-December) and the 16 sampling sites into two groups (A and B) based on similarities in marine water-quality characteristics. Discriminant analysis (DA) was important in data reduction because it used only eight parameters (TEMP, TURB, Si, NO(3)(-)-N, NH(4)(+)-N, NO(2)(-)-N, DO, and Chl-a) to correctly assign about 86% of the cases, and five parameters (SD, NH(4)(+)-N, TP, NO(2)(-)-N, and BOD(5)) to correctly assign >81.15% of the cases. In addition, principal component analysis (PCA) identified four latent pollution sources for groups A and B: organic/eutrophication pollution, natural pollution, mineral pollution, and nutrient/fecal pollution. Furthermore, during the second and third periods, all sites received more organic/eutrophication pollution and natural pollution than in the first period. SM5, SM6, SM17, SM10, SM11, SM12, and SM13 (second period) were affected by organic and eutrophication pollution, whereas SM3 (third period) and SM9 (second period) were influenced by natural pollution. However, differences between mineral pollution and nutrient/fecal pollution were not significant among the three periods. SM17 and SM10 were affected by mineral pollution, whereas SM4 and SM9 were highly polluted by nitrogenous nutrient/fecal pollution.  相似文献   

20.
This study presents input–output budgets of total dissolved nitrogen (TDN), dissolved organic N (DON) and dissolved inorganic N (DIN) for a reservoir in a peatland catchment in the south Pennines (UK). This site receives high levels of atmospheric inorganic N deposition, in the range of 26 kg N ha?1 yr?1. The results show that the reservoir retains ~21 to 31% of the annual TDN input (8806 ± 741 kg N). Approximately 39 to 55% of DON (3782 ± 653 kg N) and 6 to 13% of DIN (5024 ± 349 kg N) were retained/processed. A long water retention time (104 days), average annual pH of 6.5, high concentrations of DIN in the reservoir water and a deep water column suggest that denitrification is potentially a key mechanism of N retention/removal. The results also demonstrate that DON is potentially photodegraded and utilized within the reservoir, particularly during the summer season when 58 to 80% of DON input (682 ± 241 kg N) was retained, and a net export of DIN (~34 kg N) was observed. The findings therefore suggest that DON may play a more crucial role in the biogeochemistry of peat‐dominated acid sensitive upland freshwater systems than previously thought. Reservoirs, impoundments and large lakes in peatland catchments may be important sites in mediating downstream N transport and speciation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号