首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The succession of lithofacies of a part of the Barren Measures Formation of the Talchir Gondwana basin has been studied by statistical techniques. The lithologies have been grouped under five facies states viz coarse-, medium-, and fine-grained sandstones, shale and coal for statistical analyses. Markov chain analysis indicates the arrangement of Barren Measures lithofacies in the form of fining upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium-and fine-grained sandstones, shales and coal at the top. The entropy analysis puts the Barren Measures cycles into A-4 type cyclicity, which consists of different proportions of lower, upper and side truncated cycles of lithologic states. Regression analysis indicates a sympathetic relationship between total thickness of strata (net subsidence) and number of cycles and an antipathic relationship between average thickness and number of sedimentary cycles. The cyclic sedimentation of the Barren Measures Formation was controlled by autocyclic process which occurred due to the lateral migration of streams triggered by intrabasinal differential subsidence. In many instances, the clastic sediments from the laterally migrating rivers interrupted the cyclic sedimentation resulting in thinner cycles in areas where the number of cycles are more. Principal component and multivariate regression analyses suggest that the net subsidence of the basin is mostly controlled by the thickness of sandstones, shale beds and coal stringers.  相似文献   

2.
Cerdanya is a Neogene half-graben basin that lies over the Palaeozoic rocks of the Eastern Pyrenean Axial Zone. Subvertical fault scarps bound the half-graben at the southern and southeastern margins, but Neogene sediments may directly overlap Palaeozoic rocks in the northern margin.Vertical electrical soundings show that the Miocene sequence reaches a maximum thickness of over 700 m and that fine-grained lacustrine deposits from the central part of the basin grade to coarser fluvial deposits toward the margins.Macro- and micro-structural data analyzed in Cerdanya and other related Neogene basins, such as Rosselló, Confient, Capcir and Seu d'Urgell, suggest that they formed as a consequence of transtensile motion along an old northeastern-trending fault. The stress situation favoured sinistral movements along east-trending faults.  相似文献   

3.
Sediments of the Ordovician to Devonian Sinakumbe Group (∼210 m thick) and overlying Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼4.5 km thick) were deposited in the mid-Zambezi Rift Valley Basin, southern Zambia.The Sinakumbe-Karoo succession represents deposition in a extensional fault-controlled basin of half-graben type. The basin-fill succession incorporates two major fining-upward cycles that resulted from major tectonic events, one event beginning with Sinakumbe Group sedimentation, possibly as early as Ordovician times, and the other beginning with Upper Karoo Group sedimentation near the Permo-Triassic boundary. Minor tectonic pulses occurred during deposition of the two major cycles. In the initial fault-controlled half-graben, a basin slope and alluvial fan system (Sikalamba Conglomerate Formation), draining southeastward, was apparently succeeded, without an intervening transitional facies, by a braided river system (Zongwe Sandstone Formation) draining southwestward, parallel to the basin margin. Glaciation followed by deglaciation resulted in glaciofluvial and glacio-lacustrine deposits of the Upper Carboniferous to Lower Permian Siankondobo Sandstone Formation of the Lower Karoo Group, and isostatic rebound eventually produced a broad flood plain on which the coal-bearing Lower Permian Gwembe Coal Formation was deposited. Fault-controlled maximum subsidence is represente by the lacustrine Upper Permian Madumabisa Mudstone Formation. Block-faulting and downwarping, probably due to the Gondwanide Orogeny, culminated with the introduction of large quantities of sediment through braided fluvial systems that overwhelmed and terminated Madumabisa Lake sedimentation, and is now represented by the Triassic Escarpment Grit and Interbedded Sandstone and Mudstone Formations of the Upper Karoo Group. Outpourings of basaltic flows in the Early Jurassic terminated Karoo sedimentation.  相似文献   

4.
西秦岭徽县-成县早白垩世盆地沉积特征及其构造意义   总被引:1,自引:1,他引:0  
张英利  王宗起  闫臻 《地质通报》2012,31(7):1142-1154
徽县-成县(徽成)盆地是西秦岭造山带内一个具有代表性的早白垩世走滑拉分盆地。沉积相分析结果显示,盆地内部发育不同的沉积相组合,且呈现明显的时空变化特征。盆地充填序列分析表明,徽成盆地的沉积演化可划分为4个阶段:田家坝组沉积时期、周家湾组沉积时期、鸡山组沉积早期和鸡山组沉积晚期。田家坝组沉积时期,盆地南部以冲积扇砾岩和辫状河砂、砾岩沉积组合为主;周家湾组沉积时期,盆地西部以冲积扇砾岩和辫状河砂、砾岩沉积组合为主;鸡山组沉积时期,盆地北部和南部以冲积扇砾岩和辫状河砂、砾岩沉积为主。在整个沉积过程中,盆地中心表现为湖泊(前三角洲)相细粒沉积,而河流和三角洲体系则分布于冲积扇和深水湖泊(前三角洲)沉积之间。古流向和物源恢复结果证明,盆地沉积物主体来自于盆地北部、南部的花岗岩和前侏罗纪地层。盆地构造沉降和沉积充填过程主要受控于盆地北缘徽凤断裂,盆地南部抬升与盆地边界断层的活动密切相关,是盆地的主要物源区。  相似文献   

5.
Cyclic characters of Karharbari, Barakar and Barren Measures Formations of the Talchir Gondwana basin have been studied in the subsurface logs statistically using first order Markov chain and entropy analyses. Results strongly suggest that the sediments of these formations were deposited by Markovian mechanism and all the three formations represent cyclic sedimentation. The complete cycles of all the three formations are identical and exhibit fining-upward character. Each complete cycle starts with a thin conglomerate or pebbly to coarse-grained sandstone at the base and successively followed by medium- and fine-grained sandstones, interbedded sandstone-shale, shale and terminates with a coal seam at the top. There are, however, minor variations of facies transition in different formations. Entropy analysis also corroborates these findings. The upward sequence of facies states, which is stationary at individual localities, is non-stationary over the entire area. Broad regional variations in the depositional environment, that are not significant at the local scale, may be the plausible explanation. The Karharbari, Barakar and Barren Measures sediments of the Talchir Gondwana basin fit suitably into the concept of fluvial cycles.  相似文献   

6.
The Athgarh Formation is the northernmost extension of the east coast Upper Gondwana sediments of Peninsular India. The formation of the present area is a clastic succession of 700 m thick and was built against an upland scarp along the north and northwestern boundary of the basin marked by an E-W-ENE-WSW boundary fault. A regular variation in the dominant facies types and association of lithofacies from the basin margin to the basin centre reveals deposition of the succession in an alluvial fan environment with the development of proximal, mid and distal fan subenvironments with the distal part of the fan merging into a lake. Several fans coalesced along the basin margin, forming a southeasterly sloping, broad and extensive alluvial plain terminating to a lake in the centre of the basin. Aggradation of fans along the subsiding margin of the basin resulted in the Athgarh succession showing remarkable lateral facies change in the down-dip direction. The proximal fan conglomerates pass into the sandstone-dominated mid-fan deposits, which, in turn, grade into the cyclic sequences of sandstone-mudstone of the distal fan origin. Further downslope, thick sequence of lacustrine shales occur. The faulted boundary condition of the basin and a thick pile of lacustrine sediments at the centre of the basin suggest that tectonism both in the source area and depositional site has played an important role throughout the deposition of the Athgarh succession of the present area. The vertical succession fines upward with the coarse proximal deposits at the base and fine distal deposits at the top, suggesting deposition of the succession during progressive reduction of the source area relief after a single rapid uplift related to a boundary fault movement.The NW-SE trending fault defining the Son-Mahanadi basin of Lower Gondwana sediments are shear zones of great antiquity and these were rejuvenated under neo-tensional stress during Lower Gondwana sedimentation. The E-W-ENE-WSW trending fault of the Athgarh basin, on the other hand, define tensional rupture of much younger date. In the Early Cretaceous period, there was a reversal of palaeoslope in the Athgarh basin (southward slope) with respect to the Son-Mahanadi basin (northward slope). During the phase drifting of the Indian continent and with the evolution of Indian Ocean in the Early Cretaceous period, the tectonic events in the plate interior was manifested by formation of new grabens like the Athgarh graben.  相似文献   

7.
燕山构造带中段早白垩世盆地特征   总被引:2,自引:2,他引:0  
燕山构造带中段主要包含3个早白垩世盆地,即滦平盆地、凤山盆地、石人沟盆地.通过对盆地的沉积相分析、古水流的恢复以及盆地构造-沉积演化研究,认为燕山构造带中段早白垩世盆地发育分为三个阶段,即早期火山喷发阶段、中期强烈断陷阶段和晚期填平阶段.早期发育强烈的火山作用,形成以酸性火山岩为主的张家口组;中期盆地主体呈半地堑状,受单一边界主断层控制,盆地相互独立,盆地边缘以冲积扇砾岩和扇三角洲砂岩、砾岩沉积为主,盆地中心为湖泊细粒沉积.古流向和物源恢复结果证明,盆地沉积物主体来自于北部和/或西部的变质岩基底.盆地构造沉降和沉积充填过程主要受边界正断层的控制,断层下盘基底岩石的抬升与盆地边界正断层活动相关,从而成为盆地主要的物源区.  相似文献   

8.
The Denizli Basin (southwestern Anatolia, Turkey) contains a record of environmental changes dating since the Early Miocene. Detailed facies analysis of the Neogene formations in this half-graben enables us to document successive depositional regimes and palaeogeographic settings. Sedimentation commenced in the Early Miocene with the deposition of alluvial-fan and fluvial facies (K?z?lburun Formation). At this stage, alluvial fans sourced from elevated areas to the south prograded towards the basin centre. The Middle Miocene time saw the establishment of marginal lacustrine and wetland environments followed by the development of a shallow lake (Sazak Formation). The uppermost part of this unit consists of evaporitic saline lake and saline mudflat facies that grade upward into brackish lacustrine deposits of Late Miocene-Pliocene age (Kolankaya Formation). The lake became shallower at the end of the Pliocene time, as is indicated by expansion shoreface/foreshore facies. In the Early Quaternary, the Denizli Basin was transformed into a graben by the activation of ESE-trending normal faults. Alluvial fans were active at the basin margins, whereas a meandering river system occupied the basin central part.Oxygen isotope data from carbonates in the successive formations show an alternation of wetter climatic periods, when fresh water settings predominated, and very arid periods, when the basin hosted brackish to hypersaline lakes. The Neogene sedimentation was controlled by an active, ESE-trending major normal fault along the basin's southern margin and by climatically induced lake-level changes. The deposition was more or less continuous from the Early Miocene to Late Pliocene time, with local unconformities developed only in the uppermost part of the basin-fill succession. The unconformable base of the overlying Quaternary deposits reflects the basin's transformation from a half-graben into a graben system.  相似文献   

9.
The Upper Permian Bijori Formation of the Satpura Gondwana basin comprising fineto coarse-grained sandstone, carbonaceous shale/mudstone and thin coal bands was previously interpreted as the deposits of meandering rivers. The present study documents abundance of wave ripples, hummocky and swaley cross-stratification and combined flow bedforms in the Bijori Formation, suggesting that a significant part of the formation was deposited in a wave-agitated environment. Evidence of near-emergent depositional conditions provided by repeated occurrence of rootlet beds and hydromorphic paleosols, local flooding surfaces denoting rapid fluctuation of water level, occurrences of temnospondyl vertebrate fossils, and absence of tidal signatures and marine fossils suggest a lacustrine rather than marine depositional regime. Five facies associations recognised within the Bijori Formation are inferred to represent fluvial channels and associated floodplains (FA1), lake shorelines (FA2), subaqueous distributary channels and associated levees (FA3), waveand storm-affected delta front (FA4), and open lacustrine/lower shoreface (FA5) deposits. The planoconcave fluvial channel-fill sandbodies with unidirectional cross-beds are clearly distinguishable from the delta front bars that show a convexo-plan or bi-convex sandbody geometry and dominance of wave and combined flow bedforms. Some of the distributary channels record interaction of fluvial and wave-dominated basinal processes. Major distributary sandbodies show a north to northwest flow direction while wave-affected delta front sandbodies show very complex flow patterns reflecting interaction between fluvial discharge and wave processes. Wave ripple crest trends show that the lake shoreline had an overall east-northeast to west-southwest orientation. The lack of documented contemporaneous lacustrine or marine sediments in the Satpura Gondwana basin posed a major problem of basin-scale palaeogeographic reconstruction. The existence of Bijori lake solves the problem and the lake is inferred to have acted as repository for the contemporaneous alluvial drainage. Development of the large Bijori lake body implies generation of accommodation space exceeding the rate of sediment supplied and thus represents locus of high tectonic subsidence. Transition of fluvial sediments with red mudstone and calcareous soil profile in the lower part of the succession to carbonaceous shale and coal-bearing lacustrine sediments in the upper part, denote a change from a warm semi-arid climate with seasonal rainfall to a more humid one.  相似文献   

10.
根据札达盆地剖面中地层的接触关系、沉积旋回、沉积体系和岩相岩性特征,可将上新统河湖相地层划分为2个组、5个沉积相、8个岩段。古格组(N22g)一岩段为砾岩,属河流相沉积;二、三、五岩段以细碎屑岩为主,属浅湖相沉积;四岩段以含粘土质细碎屑岩为主,属深湖相沉积。托林组(N21t)一、二、三岩段为一套砾岩、含砾中粗粒钙质长石岩屑砂岩和中细粒砂岩的碎屑岩,为典型冲(洪)积扇沉积物。ESR法和古地磁法测年结果表明,古格组形成时代为上新世晚期(4.40~2.47Ma);托林组形成时代为上新世早期(5.44~4.40Ma)。札达盆地为一同生断陷盆地,在上新世时期的构造运动过程中,盆地演化经历了水进体系域—湖泊扩张体系域—湖泊收缩体系域3个发展阶段。  相似文献   

11.
The Triassic deposits of Cerro Puntudo in the San Juan province of western Argentina constitute the northernmost exposures of the northern portion of the nonmarine Cuyo rift basin, also known as the Las Peñas-Tamberías half-graben. The local column, with an exposed thickness of approximately 400 m, consists of abundant basal and topmost coarse alluvial fan conglomerates and breccias (facies associations I and II) and a relatively thin (approximately 50 m) intervening sequence of marginal, shallow lacustrine deposits characterized by stromatolitic (domal) limestones, tuffaceous mudstones, and fine-grained sandstones (facies association III). Subaerial exposure in the lacustrine deposits is evidenced by desiccation cracks and brecciation. A very thin (0–6 m), laterally, discontinuous succession of lacustrine deposits with similar characteristics is interbedded with the basal conglomerates. Laterally, this lacustrine interval was eroded by overlying conglomerates. The basal conglomerates commonly show crude normal grading, faint cross-bedding, and b-axis clast imbrication. The predominance of coarse deposits and paleocurrents from NW to SE, indicative of an axial flow pattern, suggest that these exposures correspond to the northern end of the Cuyo basin, which is characterized by a shallow, alluvial fan-encased, carbonate-rich lake margin. This lacustrine interval can be correlated with the thicker lacustrine section exposed to the south at Quebrada del Tigre and Ciénaga Larga along the border fault margin of a nonmarine half-graben. The correlation with these sections suggests that the Cerro Puntudo lacustrine deposits are the shallowest equivalent of more profundal, organic-rich lacustrine sediments exposed in the deepest segment of the border fault margin. These thickness and facies variations are the result of differential subsidence along the border fault margin between the low accommodation, fault tip end represented by the Cerro Puntudo section and the high accommodation, central segment located to the south.  相似文献   

12.
燕山构造带滦平早白垩世盆地沉积过程和演化   总被引:2,自引:1,他引:2  
滦平盆地是燕山构造带内一个具有代表性的早白垩世伸展盆地。对盆地内沉积岩相和相组合的详细分析结果显示,盆地内部发育不同的沉积相带并显示明显的空间变化。盆地北部和西部边缘以冲积扇砾岩和扇三角洲砂岩、砾岩沉积为主,盆地中心为湖泊细粒沉积。河流相砂岩和砾岩主要分布于盆地的东南部。古流向和物源恢复结果证明,盆地沉积物主体来自于北部和西部老变质岩基底,仅少部分沉积物来自盆地的东南缘。盆地构造沉降和沉积充填过程主要受北缘和西缘张性断层的控制,断层下盘基底岩石的抬升与盆地边界正断层活动相关,从而成为盆地主要的物源区。滦平盆地的演化可划分为三个阶段:即早期火山喷发阶段、中期强烈断陷阶段和晚期填平阶段。滦平盆地代表了早白垩世燕山构造带其它同类盆地的发展过程,它们皆以小型独立的盆地发育为特征。  相似文献   

13.
The Kimmeridgian Quebrada del Sapo Formation in the southernmost Neuquén Basin in Argentina represents a succession up to 40 m thick of coarse- to fine-grained fluvial deposits overlain by aeolian deposits. These fluvial–aeolian deposits reflect a significant palaeogeographic change in the basin and are related to a major, tectonically enhanced, relative sea-level fall. The fluvial section is dominated by braided-channel, fine-grained ephemeral, and sheetflood deposits. Aeolian facies are dominated by dune deposits, with minor sandsheet and interdune units. Changes in the nature of both fluvial and aeolian sedimentation within the studied area suggest a regional variability of accommodation/sediment supply conditions. The regional changes of the aeolian succession likely reflect different relative positions within a major erg. In the upwind margin of the erg, a shallow water table promoted water-lain sedimentation in interdune areas, whereas in the central parts of the erg, dry sediment accumulation took place above the regional water-table level. The vertical transition observed in the Quebrada del Sapo Formation, from fluvial to aeolian deposits, may be the result of a local climatic change to drier conditions due to the development of a climatic barrier imposed by growth of a magmatic arc to the west. Alternatively, the vertical transition could be related to a lowering of the water table associated with the compartmentalization of the basin during a period of low sea level.  相似文献   

14.
A siliciclastic-dominated succession (~11 m thick) underlying Harrat Rahat, belonging to the Miocene–Pliocene Bathan Formation is recently exposed at Al-Rehaili area, North Jeddah, Saudi Arabia. It covers a wide spectrum of grain sizes varying from clay-rich mudstones to cobble grade conglomerate and consists of a variety of facies vary from fluvial to marginal and open lacustrine deposited in a half-graben basin formed along the eastern margin of the extensional Red Sea Basin. Field-based sedimentologic investigation enables to identify ten facies grouped into three facies associations (A–C). The depositional history is subdivided into two stages. The first stage represents deposition in gravel to sand-dominated fluvial system sourced from a southern source and grade northward into lacustrine delta and open lacustrine setting. The second stage on the other hand includes deposition of fluvial channels running in E–W direction with attached bank sand bar. Sequence stratigraphic interpretations of the lacustrine deposits enable to identify three unconformity-bounded sequences (SQ1–3). The basal sequence is incomplete, consisting of three aggradationally to progradationally stacked delta plain and delta front parasequences. The second sequence is sharply and erosively overlying a red paleosol bed that defines the upper boundary of the first sequence. It includes two system tracts; upward-fining and deepening lacustrine offshore mudstones of the transgressive system tracts unconformably overlain by red paleosol of the regressive systems tracts. The top of this sequence is delineated at the sharp transgressive surface of erosion at the base of delta mouth bar deposits of sequence 3. Changes in the accommodation and sedimentation rates by basin subsidence under the influence of tectonics and sediment compaction and loading as well as climatic oscillation between semi-arid to arid conditions were the major controls on the fluvio-lacustrine sedimentation and their facies distribution. Tectonic reorganization of the drainage system resulted in the formation of E–W flowing fluvial streams in the second stage.  相似文献   

15.
In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China: (1) the formation and uplift of the Qinling-Dabie orogenic belt along the northern margin of the South China Plate, due to its collision with the North China Plate; and 2) the development of a 1300-km-wide intra-continental orogen in the southeastern part of the South China Plate, which led to a northwestward movement of the foreland thrust-fold zone. These tectonic events resulted in the ending of the Yangtze Platform, and were a stable paleogeographic factor from the Eidacaran to the end of the Middle Triassic. This platform was characterized by the widespread development of shallow-water carbonates. After the end of the Yangtze Platform, the upper Yangtze foreland basin (or Sichuan foreland basin) was formed during the Late Triassic and became a accumulation site of fluvial deposits that are composed of related strata of the Xujiahe Formation. In western Sichuan Province, the Xujiahe Formation overlies the Maantang Formation shallow-water carbonate rocks of the Xiaotangzi Formation siliciclastic rocks (from shelf shales to littoral facies). The sequence-stratigraphic framework of the Upper Triassic in the upper Yangtze foreland basin indicates a particular alluvial architecture, characterized by sequences composed of (1) successions of low-energy fluvial deposits of high-accommodation phases, including coal seams, and (2) high-energy fluvial deposits of low-accommodation phases, including amalgamated river-channel sandstones. The spatial distribution of these fluvial deposits belonging to the Xujiahe Formation and its relative strata is characterized by gradual thinning-out, overlapping, and pinching-out toward both the east and south. This sedimentary record therefore expresses a particular sequence-stratigraphic succession of fluvial deposits within the filling succession of the foreland basin. The sequence-stratigraphic framework for the Upper Triassic in the Upper Yangtze region provides a record of the end of the Yangtze Platform and the formation of the upper Yangtze foreland basin.  相似文献   

16.
The Miocene intramontane Fohnsdorf-Seckau Basin is situated at the junction of the sinistral Mur-Mürz-fault system and the dextral Pöls-Lavanttal fault system. The basin comprises a 2,400-m-thick coal-bearing fluviodeltaic-lacustrine succession (Lower to Middle Miocene, Upper Karpatian?/Lower Badenian) which is overlain by a 1,000-m-thick alluvio-deltaic conglomeratic succession (Apfelberg Formation, ?Middle/Upper Badenian) in the south. A three-stage model for the basin evolution has been reconstructed from structural analysis and basin fill geometries. During a first pull-apart phase, subsidence occurred along ENE-trending, sinistral strike-slip faults of the Mur-Mürz fault system and NE-SW to N-S-trending normal faults, forming a composite pull-apart basin between overstepping en-echelon strike-slip faults. The Seckau and Fohnsdorf sub-basins are considered as two adjacent pull-aparts which merged into one basin. During the second phase, N-S to NNW-SSE extension and normal faulting along the southern basin margin fault formed a half-graben, filled by wedge-shaped alluvial strata (Apfelberg Formation). During the third phase, after the end of basin sedimentation, the dextral Pöls-Lavanttal fault system reshaped the western basin margin into a positive flower structure.  相似文献   

17.
The rift history of the Salta basin is related to the evolution of the Central Andes and to the activity of the Pacific margin, owing to its geographic location. Sedimentation occurred from the Neocomian to the Paleogene, with deposits reaching up to 5,000 m in thickness. Paleoenvironmental analysis reveals an evolutionary history controlled by tectonic and climatic changes. Isolated grabens characterized the early synrift stage; differential subsidence provoked distinct environments in the southern and northern subbasins. In the southern subbasins, alluvial-fan, fluvial-fan and lacustrine deposits prevail, whilst in the northern subbasins eolian and fluvial environments dominate. During the Maastrichtian, two major factors controlled the basin fill: the decrease in tectonic subsidence and a relative sea-level rise as recorded in South America. An extensive and shallow Atlantic marine ingression installed a carbonate system coincident with mainly humid conditions until the Danian. Until the Middle Eocene, the fluvial and lacustrine environmental evolution of the sag basin was controlled especially by the alternation of temperate with dry and humid periods. Paleontological records reflect these climatic changes and show their relationship to the sedimentation regime.  相似文献   

18.
《International Geology Review》2012,54(12):1528-1556
ABSTRACT

The intra-continental orogeny and tectonic evolution of the Mesozoic Yanshan fold-thrust belt (YFTB) in the northern North China Craton (NCC) have been strongly debated. Here, we focus on the Shangyi basin, located in the centre of the YFTB. An integrated analysis of sedimentary facies, palaeocurrents, clast compositions, and detrital zircon dating of sediments was adopted to determine the palaeogeography, provenance, basin evolution, and intra-continental orogenic process. The Shangyi basin comprises the well-exposed Early–early Middle Jurassic Xiahuayuan Formation and the Longmen Formation, and the Late Jurassic–Early Cretaceous Tuchengzi Formation. Based on the 18 measured sections, five facies associations – including alluvial fan, fluvial, delta, lacustrine, and eolian facies – have been identified and described in detail. The onset of the Shangyi basin was filled with fluvial, deltaic, and lacustrine deposits controlled by the normal fault bounding the northern basin, corresponding to the pre-orogeny. In the Middle Jurassic, the cobble–boulder conglomerates of alluvial fan, as molasse deposits, were compatible with the syn-orogeny of the Yanshan movement, which played a critical role in northern North China and even East Asia. After the depositional break in the Middle–Late Jurassic, the Shangyi basin, controlled by the normal fault present in the north of the basin, re-subsided and quickly expanded southward with thick sedimentation, which is correlative with the post-orogeny. Combined with A-type granites, metamorphic core complexes, mafic dikes, and rift basins of the Late Jurassic–early Early Cretaceous present in the northern NCC and Mongolia, significant extension was widespread in the northern NCC and even in northeast Asia. Moreover, vertical changes of provenance indicate that the Taihang Mountain and the Inner Mongolia palaeo-uplift (IMPU) present at the west and north of the basin, respectively, experienced uplift twice in the Middle–Late Jurassic and Early Cretaceous, resulting in a regional depositional break.  相似文献   

19.
The Salvan‐Dorénaz Basin formed during the Late Palaeozoic within the Aiguilles‐Rouges crystalline basement (Western Alps) as an asymmetric, intramontane graben elongated in a NE–SW direction and bounded by active faults. At least 1700 m of fluvial, alluvial fan and volcanic deposits provide evidence for a strong tectonic influence on deposition with long‐term, average subsidence rates of > 0·2 mm yr?1. The early basin fill was associated with coarse‐grained alluvial fans that were dominated by braided channels (unit I). These issued from the south‐western margin of the basin. The fans then retreated to a marginal position and were overlain by muddy floodplain deposits of an anastomosed fluvial system (unit II) that drained towards the NE. Deposition of thick muds resulted from a reduction in the axial fluvial gradient caused by accelerated tectonic subsidence. Overlying sand‐rich meandering river deposits (unit III) document a reversal in the drainage direction from the NE to the SW caused by synsedimentary tectonism, reflecting large‐scale topographic reorganization in this part of the Variscides with subsidence now preferentially in the W and SW and uplift in the E and NE. Coarse‐grained alluvial fan deposits (unit IV) repeatedly prograded into, and retreated from, the basin as documented by coarsening‐upward cycles tens of metres thick reflecting smaller scale tectonic cycles. Volcanism was active throughout the evolution of the basin, and U/Pb isotopic dating of the volcanic deposits restricts the time of basin development to the Late Carboniferous (308–295 Ma). 40Ar/39Ar ages of detrital white mica indicate rapid tectonic movements and exhumation of the nearby basement. In unit I, youngest ages are close to that of the host sediment, but the age spectrum is wide. In unit II, high subsidence and/or sedimentation rates coincide with very narrow age spectra, indicating small, homogeneous catchment areas. In unit III, age spectra became wider again and indicate growing catchment areas.  相似文献   

20.
王宏语  李瑞磊  朱建峰  徐文 《现代地质》2019,33(6):1151-1162
构造沉积学不仅强调大地构造背景条件对盆地演化的控制作用,同时还注重盆地内部的构造特征与沉积充填特征之间的控制及响应关系研究。陆相裂谷盆地发育过程中,构造作用强烈,盆地沉积充填过程复杂,进行构造沉积学研究对揭示盆地构造沉积演化过程具有重要意义。以大量地震、钻测井资料为基础,结合大地构造背景资料,研究松辽盆地伏龙泉断陷发育过程中的构造、沉积演化特征,分析构造活动与沉积作用之间的响应及控制关系,并由此讨论半地堑陆相湖盆的沉积充填演化规律及其控制因素。研究表明,在伏龙泉断陷盆地演化过程中,早期的火山岩隆起对盆地初始裂陷期形态具有明显的影响作用;边界断层的分布及其生长速率特征则对盆地结构演化过程起着首要的控制作用。盆地裂陷期,研究区古气候环境比较稳定,构造因素是控制该陆相裂谷盆地地层序列与沉积特征的首要因素;断裂发育特征决定了盆地的古地貌特征,而盆地的古地貌特征直接影响着盆地内部的沉积充填类型与沉积体系展布格局;区域构造抬升与断块掀斜是该半地堑盆地内部发育不整合面的主要因素。在陆相裂陷盆地的构造沉积特征研究中,构造沉积学显示出了其必要性与适用性,有利于在揭示构造沉积现象的同时,合理解释其地质成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号