首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information. This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit, which represents prominent gold mineralization in southern Hunan, China. Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques, including Backscattered Electron (BSE) imaging, Cathodoluminescence (CL) response, textural characterization, and analysis of rare-earth elements (REE), major contents, and trace element compositions. The garnet was dated U-Pb dating, which yielded a lower intercept age of 161.06 ± 1.93 Ma. This age is older than the underlying granodiorite porphyry, which has a concordia age of 155.13 ± 0.95 Ma determined by zircon U-Pb dating. These results suggest that the gold mineralization may be related to the concealed granite. Two groups of garnet changed from depleted Al garnet to enriched Al garnet, and the rare earth element (REE) patterns of these groups were converted from light REE (LREE)-enriched and heavy REE (HREE)-depleted with positive europium (Eu) anomalies to medium REE (MREE)-enriched from core to rim zoning. The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration. The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.  相似文献   

2.
The Sn–W mineralized Mole Granite in Eastern Australia hosts zircon populations that crystallized at several stages during a protracted magmatic to hydrothermal evolution. Thirty-four elements have been quantified by laser-ablation inductively-coupled-plasma mass-spectrometric microanalysis with the aim of relating the chemistry of zircon to its growth environment. Trace element contents are highly variable for all textural occurrences. Zircon inclusions in earliest quartz phenocryst suggest that zircon was a liquidus phase that crystallized probably deep in the crust. Trace element contents are conspicuously high, showing only a slight positive Ce anomaly but a pronounced negative Eu-anomaly. Successive crystallization stages of magmatic zircon are characterized by progressive depletion in trace element contents, notably the rare earth elements, with an increasingly important positive Ce-anomaly. This evolution reflects saturation of REE accepting minerals such as monazite, thorite, xenotime and possibly apatite and is affected little by the exsolution of a magmatic–hydrothermal fluid. Zircon that is interpreted to have precipitated from aqueous fluids in Sn–W-bearing quartz veins shows REE patterns indistinguishable from those of late magmatic zircon. When combined with experimental evidence on the fluid–melt partitioning of REE, it indicates that the REE distribution coefficients for zircon/melt and zircon/fluid are largely comparable.

The second example of hydrothermal zircon crystallized some 2 My after the host granite. These crystals reveal an intragranular zonation of increasing trace element concentrations from core to rim. Therefore, REE abundances and patterns alone are not conclusive indicators of the geological environment in which zircon crystallized. Nevertheless, variations in trace element contents of zircon that relate to the chemistry of the melt or fluid from which zircon crystallized, as measured in cogenetic melt and fluid inclusions, are promising for future petrogenetic modeling.

Lead and Cs are strongly incompatible in hydrothermal zircon, with estimated zircon–fluid distribution coefficients D ≤ 0.001, while Sn and Li are moderately incompatible, DSn  0.6 and DLi  0.1, and Ce is compatible, DCe  14. Moreover, hydrothermal zircon has a more pronounced negative Eu-anomaly and higher Ta/Nb and U/Th ratios than the magmatic zircons of the Mole Granite.  相似文献   


3.
镁铝麻粒岩泛指一类全岩化学成分富镁、铝的麻粒岩相变质岩,是研究超高温变质作用的峰期变质条件和变质演化历史的重要对象,但目前对它的原岩属性和岩石成因的认识仍十分有限。本文以柴达木地块西缘的花土沟超高温变质地体为例,在野外调查基础上,对镁铝麻粒岩和泥质片麻岩进行了岩相学和全岩地球化学分析,发现镁铝麻粒岩与含浅色体的泥质片麻岩的SiO2、TiO2、P2O5 含量相似,TFe2O3、Al2O3、MnO、CaO、Na2O含量虽有差异但变化范围存在交集。此外,两类岩石具有相似的微量和稀土元素配分曲线,结合两者的矿物组合也存在相似性,提出花土沟镁铝麻粒岩的原岩可能是与泥质片麻岩类似的泥质沉积岩。从低角闪岩相变泥质岩到含浅色体的泥质片麻岩,再到镁铝麻粒岩,其全岩化学成分向着贫铝、钙、钾、钠,富铁、镁的趋势变化。其中,高XMg值(0.51~0.69)是镁铝麻粒岩与其他泥质片麻岩(XMg=0.34~0.43)的最大差别。通过对变泥质岩的相平衡模拟和理论计算,发现部分熔融和熔体丢失能解释大部分的变化趋势,但基本不影响全岩XMg值;只有在进变质升温过程中丢失含石榴子石的熔体才能造成变泥质岩的镁铝麻粒岩化。此外,富石榴子石的泥质残留体相比附近的含浅色体泥质片麻岩,贫硅、钠、钾,富集铝、铁、镁、锰、钙,重稀土元素含量显著高于后者,上述地球化学特征对应石榴子石熔体的加入而后长英质熔体的丢失,支持野外观察到的熔体携带石榴子石迁移的现象。最后,对镁铝麻粒岩只呈透镜体产出的原因做出了推测,即熔体很难带着石榴子石完成长距离迁移,只有被长英质正片麻岩包围的泥质沉积物,其进变质加热阶段形成的熔体才能携带石榴子石完全迁出原岩,促成变泥质岩透镜体的镁铝麻粒岩化,目前仍需更多的相关研究来验证这一推测。在世界其他高温-超高温变质岩区,石榴子石熔体的迁出和泥质岩的镁铝麻粒岩化可能也不同程度有所保留和记录。  相似文献   

4.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

5.
A combined metamorphic and isotopic study of lit‐par‐lit migmatites exposed in the hanging wall of the Main Central Thrust (MCT) from Sikkim has provided a unique insight into the pressure–temperature–time path of the High Himalayan Crystalline Series of the eastern Himalaya. The petrology and geochemistry of one such migmatite indicates that the leucosome comprises a crystallized peraluminous granite coexisting with sillimanite and alkali feldspar. Large garnet crystals (2–3 mm across) are strongly zoned and grew initially within the kyanite stability field. The melanosome is a biotite–garnet pelitic gneiss, with fibrolitic sillimanite resulting from polymorphic inversion of kyanite. By combining garnet zoning profiles with the NaCaMnKFMASHTO pseudosection appropriate to the bulk composition of a migmatite retrieved from c. 1 km above the thrust zone, it has been established that early garnet formed at pressures of 10–12 kbar, and that subsequent decompression caused the rock to enter the melt field at c. 8 kbar and c. 750 °C, generating peritectic sillimanite and alkali feldspar by the incongruent melting of muscovite. Continuing exhumation resulted in resorption of garnet. Sm–Nd growth ages of garnet cores and rim, indicate pre‐decompression garnet growth at 23 ± 3 Ma and near‐peak temperatures during melting at 16 ± 2 Ma. This provides a decompression rate of 2 ± 1 mm yr?1 that is consistent with exhumation rates inferred from mineral cooling ages from the eastern Himalaya. Simple 1D thermal modelling confirms that exhumation at this rate would result in a near‐isothermal decompression path, a result that is supported by the phase relations in both the melanosome and leucosome components of the migmatite. Results from this study suggest that anatexis of Miocene granite protoliths from the Himalaya was a consequence of rapid decompression, probably in response to movement on the MCT and on the South Tibetan detachment to the north.  相似文献   

6.
Trace element concentrations of peridotitic garnet inclusions in diamonds from two Chinese kimberlite pipes were determined using the ion microprobe. Garnet xenocrysts from the same two kimberlite pipes were also analyzed for comparison. In contrast to their extremely refractory major element compositions, all harzburgitic garnets showed enrichment in light rare earth elements (REE) relative to chondrite, resulting in sinuous REE patterns. Both normal and sinuous REE patterns were observed from the lherzolitic garnets. Concentrations of REE in garnets changed significantly from diamond to diamond and no specific correlations were observed with their major element compositions. Analyses of randomly selected two to three points within every grain of a large number of garnet inclusions by the ion microprobe demonstrated that there was no evident compositional heterogeneity, and multiple grains of one phase from a single diamond host also exhibit very similar compositions. This implies that the trace element heterogeneity within one grain or among multiple inclusions from the same diamond host, as reported from Siberian diamonds, is not a common feature for these Chinese diamonds. Concentrations of Na, Ti, and Zr tend to decrease when garnets become more refractory, but variations of Sr and Li are more complex. Compositions rich in light REE and relatively poor in high field strength elements (HFSE) of the harzburgitic garnet inclusions in diamonds are generally consistent with metasomatism by carbonatite melts. The trace element features observed from the garnet inclusions in Chinese diamonds may be caused by carbonatite melt infiltration and partial melt extraction. Spatial and temporal gradients in melt/rock ratio and temperature are the main reasons for the large variations of REE patterns and other trace element concentrations. Received: 27 April 1999 / Accepted: 1 March 2000  相似文献   

7.
Higher Himalayan Crystalline (HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites. In this study, reaction textures, mineral/bulk rare earth elements (REE), trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis. With the help of equilibrium REE and trace element partitioning model, it is shown that strong enrichment of Effective Bulk Composition (EBC) is responsible for the zoning in garnet in these rocks. The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.  相似文献   

8.
Four muscovite-biotite granites from the Western Metamorphic Belt of South-eastern Australia have rare earth element patterns characterized by: (i) light rare earth element enrichment; (ii) slight Eu depletion; (iii) varying degrees of heavy rare earth element depletion. The rare earth element and major element chemistry of three of these muscovite-biotite granites (the Koetong, Lockharts and Yabba Granites) can be approximated very closely by a model involving 20% partial melting of an ultrametamorphosed pelitic sediment and contamination of this minimum melt by the residual material left after melting, in the ratio 60% melt: 40% residue. Granitoids can be very largely solid material at the time of emplacement.The other muscovite-biotite granite studied (the Hawksview Granite) has major and trace element characteristics which distinguish if from the other three granitoids and these differences are attributed to variations in source material at the site of melt generation.The rare earth element and major element chemistry of a garnet-cordierite gneiss from the Western Metamorphic Belt can be modelled assuming 5% partial melting of a pelitic metamorphic rock and contamination of the minimum melt by the residue in the ratio 30% melt: 70% residue.Separated granitic and biotitic portions of a migmatite from the Western Metamorphic Belt have rare earth element characteristics which are inconsistent with a simple partial-melting model, but it is suggested that re-equilibration following, or during, separation of the vein material could obscure the process by which the vein of the migmatite developed. It is however certain that the vein developed in situ from a pelitic meta-sediment leaving the biotite rich selvage, without the introduction of material from an external source.Leucogranites which crop out to the east of the Western Metamorphic Belt are high level intrusions of highly fractionated granitic melt. Their Sr isotopic characteristics and features of their major and trace element chemistry suggest that they derive from an igneous source and are not directly related to the granites and gneisses to the west.  相似文献   

9.
Sm–Nd ages of garnet from the northern Coast Mountains of south-eastern Alaska, USA, constrain the timing of thermal events in polyphase metamorphic rocks of the western metamorphic belt and provide new data on the spatial extent of Cretaceous regional metamorphism. Bulk garnet–whole-rock Sm–Nd ages for a sillimanite-zone amphibolite (Taku Inlet) and a biotite-zone metapelite (Tracy Arm) are 77±17 Ma and 59±12 Ma, respectively. Garnet core–whole-rock (80±9 Ma), core–matrix (84±9 Ma), rim–whole-rock (59±4 Ma) and rim–matrix (62±4 Ma) ages were obtained from a sample collected 200  m west of a Palaeocene Coast plutonic–metamorphic complex sill-like pluton that separates medium-grade metamorphic rocks from high-grade metamorphic rocks and voluminous Tertiary plutons in the core of the orogen. The garnet core ages of c. 80 Ma indicate that the regional metamorphic grade reached garnet zone prior to the intrusion of the plutons and high-grade metamorphism of rocks to the east. Similar ages for the younger plutons, the youngest garnets and the rim of a multistage garnet ( c. 59 Ma) indicate a later episode of contact metamorphic garnet growth. Documentation of pre-71 Ma garnet-zone metamorphism along the western edge of the Coast plutonic–metamorphic complex confirms that Albian to Late Cretaceous metamorphism associated with crustal thickening affected this part of the orogen. The similarity of garnet Sm–Nd ages to independent age estimates for metamorphic events confirms that this technique provides useful estimates for the timing of Late Cretaceous to Tertiary thermal events. The c. 20  Myr difference between garnet core and rim ages suggests that the Sm–Nd isotope systematics of a single garnet grain can be used for distinguishing between multiple metamorphic events.  相似文献   

10.
Rare centimeter-sized superzoned garnets (SZGs) were discovered in two coesite-bearing whiteschists of the Brossasco-Isasca Unit (BIU), southern Dora-Maira massif (DMM), Western Alps. The superzoned garnet consists of a reddish-brown almandine core crowded with inclusions of staurolite, chloritoid, kyanite, chlorite and paragonite, and of a pinkish pyrope rim with sporadic inclusions of kyanite, and magnesian chlorite. The core–rim contact is relatively sharp and marks the termination of the inclusion-rich portion. The core composition of the superzoned garnet is almost identical to, or slightly richer in Mg, than that of the rim of porphyroblastic garnet in metapelites from the same unit. In the rim of the superzoned garnet, Mg–Fe ratio increases abruptly towards the outermost rim, whose composition is identical to that of the common pyrope in the whiteschist. At the core–rim boundary, there is no chemical gap. Chloritoid and staurolite are common inclusions in the core of the superzoned garnet in the whiteschist and in the porphyroblastic garnet in the metapelite. The staurolite composition (Si=2.00 and total R2+<2.0 for O=23 basis) and its reverse Fe–Mg distribution with respect to garnet suggest a HP origin. The Fe–Mg distribution between chloritoid and garnet is reverse in the superzoned garnet, but normal in the garnet of metapelite. Because normal Fe–Mg distribution was reported from other eclogite-facies metapelites, a model petrogenetic grid was constructed in the FMASH model system considering St, Cld, Ky, Chl, Grt, and assuming the following Fe–Mg partitioning of St>Grt>Cld>Chl. The resulting petrogenetic grid suggests that the core of the superzoned garnet contains incompatible assemblages, such as St–Cld–Chl vs. Cld–Chl–Ky. New and literature data and results of experiments in the KFASH system suggest that: (1) the superzoned garnet was formed under a single prograde high-pressure/ultra high-pressure (HP/UHP) Alpine metamorphism, (2) the almandine inclusion-rich core of the superzoned garnet crystallized at disequilibrium in a pelitic composition system at around 600°C and less than 16 kbar, probably from a former metapelite xenolith included in a Variscan granitoid, and (3) the chemical environment of the host rock suddenly changed from the normal pelite to the whiteschist composition by a metasomatic process during the rim growth, i.e., at a stage close to the UHP climax.  相似文献   

11.
The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.  相似文献   

12.
石榴子石是演化花岗岩常见的重要副矿物之一,但石榴子石地球化学特征如何随岩浆演化而变化是有待探讨的问题之一。雅拉香波片麻岩穹隆发育年龄分别为20. 3±0. 5Ma和20. 1±0. 3Ma(锆石U-Pb年龄)的高Sr/Y比二云母花岗岩(TMG)和淡色花岗岩(Grt-LG)。虽然两类花岗岩都含石榴子石,且在形成时代和Sr-Nd同位素组成上相似,但在元素地球化学特征上具有明显的差异,淡色花岗岩和二云母花岗岩分别代表演化程度较高和较原始的岩浆。在同一件样品中,在石榴子石颗粒之间,存在一定程度的微量元素地球化学特征的不均一性,反映了局部熔体地球化学特征。在两类花岗岩中,岩浆型石榴子石具有以下相似的地球化学特征:(1)从核部到边部,Mn和HREE含量降低,表现出典型的生长环带特征;(2)富集HREE,亏损LREE;和(3)显著的Eu负异常。但在关键微量元素Zn、Sc和Y上,具有明显的差异性。在花岗质岩浆演化过程中,贫Fe、Mg和Mn矿物相的分离结晶作用,导致残留熔体的Ca和Sr含量降低,Eu负异常幅度增大,Sc、Zn、Y和HREE增高,是导致淡色花岗岩石榴子石相应元素含量增高的主要原因。上述观测表明:高Sr/Y花岗岩也可以结晶石榴子石,与通常的淡色花岗岩石榴子石相比,这些石榴子石的Sc、Zn和Y含量和Eu异常幅度明显较低。但随分异程度的升高,石榴子石的元素地球化学特征与源自变沉积岩的淡色花岗岩的类似。因此,花岗岩中的石榴子石矿物化学特征变化记录了花岗岩岩浆演化的重要信息。  相似文献   

13.
A sequence of partial melting reactions at Mt Stafford, central Australia   总被引:8,自引:2,他引:6  
Metasedimentary gneisses show a rapid change in grade in a 10  km wide low- P /high- T  regional aureole at Mt Stafford in the Arunta Block, central Australia. Migmatite occurs in all but the lowermost of five metamorphic zones, which grade from greenschist (Zone 1) through amphibolite (Zones 2–3) to granulite facies (Zones 4–5). The sequence of partial melting reactions inferred for metapelitic rocks is dependant upon protolith, temperature and fluid conditions. The metapelite solidus in Zone 2 reflects vapour-present melting at P ≈3  kbar and T  ≈640  °C, melting having initially been controlled by the congruent breakdown of the assemblage Crd–Kfs–Bt–Qtz. At slightly higher temperature, andalusite in leucosome formed via the reaction Kfs+Qtz+Bt+H2O→And+melt; And+melt having been stabilized by the presence of boron. Sillimanite coaxially replaces andalusite in the high-grade portion of Zone 2. In Zone 3, large aluminosilicate aggregates in leucosome are armoured by Spl–Crd±Grt symplectites. Garnet partially pseudomorphs biotite, cordierite or spinel in high-grade portions of Zone 3. Zone 4 Grt–Crd–Opx-bearing metapsammite assemblages and garnet-bearing leucosome reflect T  ≈800  °C and P =2.2±0.9  kbar. In the model KFMASH system the principal vapour-absent melting step reflected significant modal changes related to the breakdown of the As–Bt tie-line and the establishment of the Spl–Crd tie-line; the bulk rock geochemistry of migmatite samples straddle the Spl–Crd tie-line. The aluminous bulk-rock composition of the common bedded migmatite restricted its potential to witness garnet-forming and orthopyroxene-forming reactions, minor textural and modal changes in and above Zone 3 reflecting biotite destablization in biotite-poor assemblages.  相似文献   

14.
Pods of granulite facies dioritic gneiss in the Pembroke Valley, Milford Sound, New Zealand, preserve peritectic garnet surrounded by trondhjemitic leucosome and vein networks, that are evidence of high‐P partial melting. Garnet‐bearing trondhjemitic veins extend into host gabbroic gneiss, where they are spatially linked with the recrystallization of comparatively low‐P two‐pyroxene‐hornblende granulite to fine‐grained high‐P garnet granulite assemblages in garnet reaction zones. New data acquired using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA‐ICPMS) for minerals in various textural settings indicate differences in the partitioning of trace elements in the transition of the two rock types to garnet granulite, mostly due to the presence or absence of clinozoisite. Garnet in the garnet reaction zone (gabbroic gneiss) has a distinct trace element pattern, inherited from reactant gabbroic gneiss hornblende. Peritectic garnet in the dioritic gneiss and garnet in trondhjemitic veins from the Pembroke Granulite have trace element patterns inherited from the melt‐producing reaction in the dioritic gneiss. The distinct trace element patterns of garnet link the trondhjemitic veins geochemically to sites of partial melting in the dioritic gneiss.  相似文献   

15.
Polyphase deformation and metamorphism of pelitic schists of Chorbaoli Formation of Sausar Group in and around Ramtek area, Nagpur district, Maharashtra, India has led to the development of garnet and sataurolite porphyroblasts in a predominantly quartz-mica matrix. Microstructural study of oriented thin sections of these rocks shows that garnet and staurolite have different growth histories and these porphyroblasts share a complex relationship with the matrix. Garnet shows at least two phases of growth — first intertectonic between D1 and D2 (pre-D2 phase) and then syn-tectonic to post-tectonic with respect to D2 deformation. Growth of later phase of garnet on the earlier (pre-D2) garnet grains has led to the discordance of quartz inclusion trails between core and rim portion of the same garnet grain. Staurolite develops only syn-D2 and shows close association with garnet of the later phase. The peak metamorphic temperature thus coincided with D2 deformation, which developed the dominant crenulation schistosity (S2), regionally persistent in the terrain. The metamorphic grade reached up to middle amphibolite facies in the study area, which is higher than the adjoining southern parts of Sausar Fold Belt.  相似文献   

16.
The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U–Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U–Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core–overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327–320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core, and (2) D opx/grt values define positive trends reaching values considered as suggestive of equilibrium from Er to Lu only with respect to the outer core of garnet. The presence of a zircon core dated 320 Ma in the inner rim of garnet suggests that it, as well as those dated at 325–320 Ma in the other textural sites and, probably, those dated at 339–336 Ma showing depletion of HREE, grew after the garnet core, which sequestered a lot of HREE and earlier than the HREE rich margin of garnet. The quite uniform REE contents in orthopyroxene from matrix and corona and the low and uniform contents of HREE in the zircon overgrowths dated at about 300 Ma allow to think that homogenisation occurred during or after the corona formation around this age. The domains dated around 325–320 Ma would approximate the stages of decompression, whereas the metamorphic peak probably occurred earlier than 339 Ma.  相似文献   

17.
A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.  相似文献   

18.
The Ranomandry Complex is a Neoproterozoic, nested intrusion from central Madagascar composed of a gabbroic core within a coeval peraluminous granite ring intruding pelitic metasediments. Although xenocryst entrainment and magma mixing have both contributed to marginal phases of the granite, the primary melt is characterised by steep LREE/HREE ratios and negligible, or slightly positive, Eu anomalies. Both isotopic and trace element systematics preclude an origin from either partial melting of the metapelitic country rock or from fractional crystallisation of the gabbroic magma. However, trace-element modelling suggests an origin from the dehydration melting of a plagioclase-poor, garnet-bearing metagreywacke at temperatures of 850–900 °C and at lower crustal pressures (>10 kbar). Melting of an enriched subcontinental mantle generated gabbroic magmas that caused advective heating and anatexis at the base of thickened continental crust during their ascent. Transport of the resulting granite magma was facilitated by the pre-existing plumbing system that overcame thermal and mechanical problems associated with both diapirism and self-propagating dykes as mechanisms for long-distance transport of granite magmas. The nested geometry of the intrusions is an indication of a structurally homogeneous lower crust that contains no pre-existing shear zones or fault systems.  相似文献   

19.
Degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan is determined utilizing whole-rock trace element compositions. The key samples used in this study were taken from the migmatite front of this area and have interboudin partitions filled with tourmaline-bearing leucosome. These samples are almost perfectly separated into leucosome (melt) and surrounding matrix (solid). This textural feature enables an estimate of the melting degree by a simple mass-balance calculation, giving the result of 5–11 wt.% of partial melting. Similar calculations applied to the migmatite samples, which assume average migmatite compositions to be the residue solid fraction, give degree of melt extraction of 12–14 wt.% from the migmatite zone. The similarity of the estimated melting degree of 5–11 wt.% with that in other tourmaline–leucogranites, such as Harney Peak leucogranite and Himalayan leucogranites, in spite of differences in formation process implies that the production of tourmaline leucogranites is limited to low degrees of partial melting around 10 wt.%, probably controlled by the breakdown of sink minerals for boron such as muscovite and tourmaline at a relatively early stage of partial melting. Because the amount of boron originally available in the pelitic source rock is limited (on average 100 ppm), 10 wt.% of melting locally requires almost complete breakdown of boron sink mineral(s) in the source rock, in order to provide sufficient boron into the melt to saturate it in tourmaline. This, in turn, means that boron-depleted metapelite regions are important candidates for the source regions of tourmaline leucogranites.  相似文献   

20.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号