首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, three-dimensional linear force-free field configurations that can be associated with filaments are considered. It is assumed that the field configurations are suitable to represent filaments if they contain magnetic dips. With the photospheric flux distribution chosen to be an arcade with a dextral/sinistral axial component, it is found that dipped configurations exist only for large values of alpha (where, ×B=B). The dips always lie above the polarity inversion line in the centre of the channel between the flux regions. When the dips are viewed from above to a depth of 1 Mm they resemble closely the shape of filaments viewed in absorption on the solar disk. As the magnitude of alpha increases, the horizontal and vertical extent of the dips also increases, giving active-region filaments for low values of alpha and quiescient filaments for high values of alpha. Dextral filaments only form for negative values of alpha and sinistral filaments for positive values of alpha. The portion of the field line that is dipped is always of inverse polarity and the magnitude of the field in the dipped region increases with height, both of which are consistent with Leroy, Bommier, and Sahal-Bréchot (1983). Overlying the region of dips there are arcades of normal polarity which have the correct left-bearing/right-bearing orientation for dextral/sinistral filaments. When the hypothesis of barbs occurring in dipped field lines is used, barbs that branch out of the main axis and to the right/left for dextral/sinistral filaments can be formed around minority polarity elements on either side of the polarity inversion line. No barbs are found around normal polarity elements. The model reproduces many of the observed features of filament channels, filaments and their barbs.  相似文献   

2.
Litvinenko  Yuri E. 《Solar physics》2000,196(2):369-375
Speeds of vertical flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a magnetostatic solution describing a balance between the Lorentz force, gravity, and gas pressure in a barb. This approach explains why some of the flows are neither aligned with the magnetic field nor controlled by gravity. Both the observed upflows and the magnetic field dips in barbs are likely to be caused by photospheric magnetic reconnection.  相似文献   

3.
We analyze the role of weak photospheric flux concentrations that evolve in a filament channel, in the triggering of dynamic changes in the shape of a filament. The high polarimetric sensitivity of THEMIS allowed us to detect weak flux concentrations (few Gauss) associated with the filament development. The synoptic instruments (MDI, SOLIS) even if their sensitivity is much less than THEMIS were useful to follow any subsequent strengthening of these flux concentrations after their identification in the THEMIS magnetograms. We found that (1) the northern part of the filament develops an Hα barb at the same time that weak minority polarity elements develop near a plage; (2) a section in the southern part of the Hα filament gradually disappears and later reforms at the same time that several mixed-polarity magnetic elements appear, then subsequently cancel or spread away from each other. These changes correspond to increases in EUV emission, as observed by TRACE, EIT, and CDS. This suggests that the plasma is temporarily heated along the filament spine. An idealized sequence of force-free models of this filament channel, based on plasma-supporting magnetic dips occurring in the windings of a very weakly twisted flux tube, naturally explains the evolution of its southern part as being due to changes in the topology of the coronal magnetic field as the photospheric flux concentrations evolve.  相似文献   

4.
A three-dimensional coronal magnetic field is reconstructed for the NOAA active region 11158 on 14 February 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented which is approximately 1000 times faster than the original DBIE used on solar non-linear force-free field modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures as observed in the front-view (SDO/AIA) and the side-view (STEREO-A/B) images for the first time; they show very good agreement three-dimensionally. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the average misalignment angles in our model are at the same order as the state-of-the-art results obtained from reconstructed coronal loops. It is found that the observed coronal loop structures can be grouped into a number of closed and open field structures with some central bright coronal loop features around the polarity inversion line. The reconstructed highly sheared magnetic field lines agree very well with the low-lying sigmoidal filament along the polarity inversion line. This central low-lying magnetic field loop system must have played a key role in powering the flare. It should be noted that while a strand-like coronal feature along the polarity inversion line may be related to the filament, one cannot simply interpret all the coronal bright features along the polarity inversion line as manifestation of the filament without any stereoscopic information.  相似文献   

5.
Martin  Sara F. 《Solar physics》1998,182(1):107-137
Observational conditions for the formation and maintenance of filaments are reviewed since 1989 in the light of recent findings on their structure, chirality, inferred magnetic topology, and mass flows. Recent observations confirm the necessary conditions previously cited: (1) their location at a boundary between opposite-polarity magnetic fields (2) a system of overlying coronal loops, (3) a magnetically-defined channel beneath, (4) the convergence of the opposite-polarity network magnetic fields towards their common boundary within the channel and (5) cancellation of magnetic flux at the common polarity boundary. Evidence is put forth for three additional conditions associated with fully developed filaments: (A) field-aligned mass flows parallel with their fine structure (B) a multi-polar background source of small-scale magnetic fields necessary for the formation of the filament barbs and (C) a handedness property known as chirality which requires them to be either of two types, dextral or sinistral. One-to-one relationships have been established between the chirality of filaments and the chirality of their filament channels and overlying coronal arcades. These findings reinforce earlier evidence that every filament magnetic field is separate from the magnetic field of the overlying arcade but both are parts of a larger magnetic field system. The larger system has at least quadrupolar footprints in the photosphere and includes the filament channel and subphotospheric magnetic fields, This ‘systems’ view of filaments and their environment enables new perspectives on why arcades and channels are invariable conditions for their existence. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005026814076  相似文献   

6.
Dual-filament initiation of a Coronal Mass Ejection: Observations and Model   总被引:1,自引:0,他引:1  
Uralov  A.M.  Lesovoi  S.V.  Zandanov  V.G.  Grechnev  V.V. 《Solar physics》2002,208(1):69-90
We propose a new model for the initiation of solar coronal mass ejections (CMEs) and CME-associated flares. The model is inferred from observations of a quiescent filament eruption in the north-western quadrant of the solar disk on 4 September 2000. The event was observed with the Siberian Solar Radio Telescope (5.7 GHz), the Nobeyama Radioheliograph (17 GHz) and SOHO/EIT and LASCO. Based on the observations, we suggest that the eruption could be caused by the interaction of two dextral filaments. According to our model, these two filaments merge together to form a dual-filament system tending to form a single long filament. This results in a slow upward motion of the dual-filament system. Its upward expansion is prevented by the attachment of the filaments to the photosphere by filament barbs as well as by overlying coronal arcades. The initial upward motion is caused by the backbone magnetic field (first driving factor) which connects the two merging filaments. Its magnetic flux increases slowly due to magnetic reconnection of the cross-interacting legs of these filaments. If a total length of the dual-filament system is large enough, then the filament barbs detach themselves from the solar surface due to magnetic reconnection between the barbs with oppositely directed magnetic fields. The detachment of the filament barbs completes the formation of the eruptive filaments themselves and determines the helicity sign of their magnetic fields. The appearance of a helical magnetic structure creates an additional upward-directed force (second driving factor). A combined action of these two factors causes acceleration of the dual-filament system. If the lifting force of the two factors is sufficient to substantially extend the overlying coronal magnetic arcade, then magnetic reconnection starts below the eruptive filament in accordance with the classical scheme, and the third driving factor comes into play.  相似文献   

7.
B. C. Low 《Solar physics》1988,115(2):269-276
The theoretical force-free magnetic fields in the first paper of this series, modeling magnetic configurations associated with polarity intrusion in active regions, are established to be all stable to linear ideal hydromagnetic perturbations under the boundary condition that anchors the lines of force rigidly to the photosphere. It is shown first that these force-free fields belong to an even larger class found by Chang and Carovillano (1981). A proof by the energy principle is then given to establish that all force-free magnetic fields in the larger class are absolutely stable. The physical implications of this result are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
Recent observations of Martin, Bilimoria, and Tracadas (1995) have revealed two new magnetic and structural classes for solar filaments and filament channels. The magnetic classes are called sinistral and dextral, while the structural classes are left-bearing and right-bearing. Dextral filaments dominate in the northern hemisphere and sinistral in the southern. A model consistent with the observations is developed with magnetic sources that represent the network flux on both sides of the channel and extra concentrations of flux that produce the strong field component along the channel. We suggest that it is the imbalance of flux locations along the channel that creates the field of a filament channel. The resulting separatrix surfaces have distinct upper and lower boundaries that may produce the upper boundary of the filament cavity or filament and the lower boundary of the filament. The model is applied to a specific filament channel, with discrete sources and sinks that represent the flux observed in a photospheric magnetogram. The resulting three-dimensional field lines near the filament location are low-lying and possess dips.  相似文献   

9.
Computation of solar magnetic fields from photospheric observations   总被引:1,自引:0,他引:1  
The observational difficulties of obtaining the magnetic field distribution in the chromosphere and corona of the Sun has led to methods of extending photospheric magnetic measurements into the solar atmosphere by mathematical procedures. A new approach to this problem presented here is that a constant alpha force-free field can be uniquely determined from the tangential components of the measured photospheric flux alone. The vector magnetographs now provide measurements of both the solar photospheric tangential and the longitudinal magnetic field. This paper presents derivations for the computation of the solar magnetic field from these type of measurements. The fields considered are assumed to be a constant alpha force-free fields or equivalent, producing vanishing Lorentz forces. Consequently, magnetic field lines and currents are related by a constant and hence show an identical distribution. The magnetic field above simple solar regions are described from the solution of the field equations.  相似文献   

10.
B. C. Low 《Solar physics》1982,77(1-2):43-61
This paper presents a new class of exact solutions describing the non-linear force-free field above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation in all three Cartesian directions and this could not be modelled adequately with previously known symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the slow growth of a pair of spots on the photosphere. The axis connecting the spots executes rotational motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly from the analytic solutions that the resulting reversal of the positions of the spots relative to the background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photospheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these highly stressed regions. The model relates theoretically for the first time these different magnetic field features that have been suggested by observation and theoretical considerations to be flare precursors. A general formula, based on the virial theorem, is also given for the free energy of a force-free field, strictly in terms of the field value at the photosphere. This formula has obvious practical application.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
Mackay  D.H.  Gaizauskas  V. 《Solar physics》2003,216(1-2):121-142
In this paper we seek the origin of the axial component of the magnetic field in filaments by adapting theory to observations. A previous paper (Mackay, Gaizauskas, and van Ballegooijen, 2000) showed that surface flows acting on potential magnetic fields for 27 days – the maximum time between the emergence of magnetic flux and the formation of large filaments between the resulting activity complexes – cannot explain the chirality or inverse polarity nature of the observed filaments. We show that the inclusion of initial helicity, for which there is observational evidence, in the flux transport model results in sufficiently strong dextral fields of inverse polarity to account for the existence and length of an observed filament within the allotted time. The simulations even produce a large length of dextral chirality when just small amounts of helicity are included in the initial configuration. The modeling suggests that the axial field component in filaments can result from a combination of surface (flux transport) and sub-surface (helicity) effects acting together. Here surface effects convert the large-scale helicity emerging in active regions into a smaller-scale magnetic-field component parallel to the polarity inversion line so as to form a magnetic configuration suitable for a filament.  相似文献   

12.
    
Using the boundary element method (BEM) for constant-, force-free fields, the vector magnetic field distributions in the chromosphere of a flare-productive active region. AR 6659 in June 1991, are obtained by extrapolating from the observed vector magnetograms at the photosphere. The calculated transverse magnetic fields skew highly from the photosphere to the chromosphere in the following positive polarity sunspot whereas they skew only slightly in the main preceding sunspot. This suggests that more abundant energy was stored in the former area causing flares. Those results demostrate the validity of the BEM solution and the associations between the force-free magnetic field and the structure of the AR 6659 region. It shows that the features of the active region can be revealed by the constant- force-free magnetic field approximation.  相似文献   

13.
Brown  D.S.  Priest  E.R. 《Solar physics》2000,194(2):197-204
Potential fields and linear force-free fields are often used as models for the magnetic field of the Sun's corona. They can be written as analytical expressions in terms of boundary values at the photosphere. Because of their relative simplicity compared with nonlinear force-free fields, these two models are of particular importance in topological analysis of solar phenomena. However, it has been suggested by Hudson and Wheatland (1999) that the topologies of potential and force-free models are in general not even qualitatively equivalent. In this paper, their example is re-examined and it is found that the opposite conclusions hold. In general, potential and force-free fields are topologically similar sufficiently close to localized sources. The exception to this are structurally unstable states, such as bifurcation states, where a small change of current can produce a significant change of topology.  相似文献   

14.
Leping Li  Jun Zhang 《Solar physics》2013,282(1):147-174
From 16 to 21 August 2010, a northern (???N60) polar crown filament was observed by Solar Dynamics Observatory (SDO). Employing the six-day SDO/AIA data, we identify 69 barbs, and select 58 of them, which appeared away from the western solar limb (???W60), as our sample. We systematically investigate the evolution of filament barbs. Three different types of apparent formation of barbs are detected, including i)?the convergence of surrounding moving plasma condensations, comprised 55.2?% of our sample, ii)?the flows of plasma condensations from the filament, comprised 37.9?%, and iii)?the plasma injections from the neighboring brightening regions, comprised 6.9?%. We also find three different ways that barb disappear, involving: i)?bi-lateral movements (44.8?%), and ii)?outflowing of barb plasma (27.6?%) results in the disappearance of a barb, as well as iii)?disappearance of a barb is associated with a neighboring brightening (27.6?%). The evolution of the magnetic fields, e.g. emergence and cancellation of magnetic flux, may cause the formation or disappearance of the barb magnetic structures. Barbs exchange plasma condensations with the surrounding atmosphere, filament, and nearby brightenings, leading to the increase or drainage of barb material. Furthermore, we find that all the barbs undergo oscillations. The average oscillation period, amplitude, and velocity are 30?min, 2.4?Mm, and 5.7?km?s?1, respectively. Besides the oscillations, 21 (36?%) barbs manifested sideward motions having an average speed of 0.45?km?s?1. Small-scale wave-like propagating disturbances caused by small-scale brightenings are detected, and the barb oscillations associated with these disturbances are also found. We propose that the kinematics of barbs are influenced or even caused by the evolution of the neighboring photospheric magnetic fields.  相似文献   

15.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present observations of an activated quiescent filament obtained in Hα from the high-resolution Dutch Open Telescope (DOT) on 20 August 2010. The filament developed a barb in 10 min, which disappeared within the next 35 min. A data set from the DOT spanning 2 h was used to analyse this event. Line-of-sight velocity maps were constructed from the Doppler images, which reveal flows in filament spine during this period. Photospheric magnetograms were used from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to determine the changes in magnetic flux in the region surrounding the barb location. The analysis shows flows in the filament spine towards the barb location preceding its formation, and flows in the barb towards the spine during its disappearance. Magnetograms reveal patches of minority polarity flux close to the end of the barb at its greatest elongation. The flows in the spine and barbs are along numerous threads that compose these typical filament structures. The flows are consistent with field-aligned threads and demonstrate that the replacement time of the mass in barbs, and by inference, in the spine is very rapid.  相似文献   

17.
Axially symmetric constant-alpha force-free magnetic fields in toroidal flux ropes with elliptical cross sections are constructed in order to investigate how their alphas and magnetic helicities depend on parameters of the flux ropes. Magnetic configurations are found numerically using a general solution of a constant-alpha force-free field with an axial symmetry in cylindrical coordinates for a wide range of oblatenesses and aspect ratios. Resulting alphas and magnetic helicities are approximated by polynomial expansions in parameters related to oblateness and aspect ratio. These approximations hold for toroidal as well as cylindrical flux ropes with an accuracy better than or of about 1%. Using these formulae, we calculate relative helicities per unit length of two (probably very oblate) magnetic clouds and show that they are very sensitive to the assumed magnetic cloud shapes (circular versus elliptical cross sections).  相似文献   

18.
In this paper, dynamic processes in the solar atmosphere are studied numerically from a complete set of MHD equations. Dynamic evolution of the non-linear magnetic field is produced by the finite amplitude of the azimuthai magnetic field at the base of the flux tube of the solar atmosphere. It is assumed that the initial configuration of the magnetic field is a force-free and potential field, the magnetic field is disturbed at the base, the plasma is driven and a part of the magnetic energy is transformed into the kinetic energy of the plasma.The compressed flow of the plasma has the features of fast MHD waves. The computation results give quantitatively the non-linear evolution of strong magnetic fields. These results could be used in an explanation of coronal transients, surge, spray and eruptive prominence events in the solar atmosphere, as well as in a modelling of plasma behaviour in high-β structure experiments in the laboratory.  相似文献   

19.
Molodensky  M. M. 《Solar physics》1974,39(2):393-404
Force-free magnetic fields (f.f.f) are considered as the first approximation of magnetic hydrodynamic equations in the case when the energy of the field exceeds the thermal energy of the medium. Such a relation of energies takes place in the upper atmosphere of the Sun in active regions.The consequence of the virial theorem obtained shows that for any solution of the corresponding non-linear system of equations only two cases are possible: either the total energy of the field is given by a divergent integral, or in some regions the force-free character of field is destroyed. This permits the conclusion that it is impossible to build f.f. current systems everywhere, and therefore boundary problems for this type of fields are of the same importance as for harmonic fields.Integral relations are obtained which are the necessary conditions for the solution of boundary problems. According to the classical principle of Thompson the harmonic fields are always stable, while f.f.f. may be stable or unstable.It is shown that: (1) arbitrary f.f.f. are stable to small changes of boundary conditions; (2) among f.f.f. the hydrodynamically stable configurations exist.The hydrodynamic stability condition restricts the size of force-free currents in such configurations.  相似文献   

20.
We observed the line-of-sight magnetic field in the chromosphereand photosphere of a large quiescent filament on the solar disk on September 6, 2001 using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. The chromospheric and photospheric magnetograms together with Hβ filtergrams of the filament were examined. The filament was located on the neutral line of the large scale longitudinal magnetic field in the photosphere and the chromosphere. The lateral feet of the filament were found to be related to magnetic structures with opposite polarities. Two small lateral feet are linked to weak parasitic polarity. There is a negative magnetic structure in the photosphere under a break of the filament. At the location corresponding to the filament in the chromospheric magnetograms, the magnetic strength is found to be about 40-70 Gauss (measuring error about 39 Gauss). The magnetic signal indicates the amplitude and orientation of the internal magnetic field in the filament. We discuss several possible causes which may produce such a measured signal. A twisted magnetic configuration inside the filament is suggested .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号