首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The coastal aquifers and inland waters of the Long Xuyen Quadrangle and Ca Mau Peninsula of southern Vietnam have been significantly impacted by sea water intrusion (SI) as a result of recent anthropogenic activities. This study identified the evolution and spatial distribution of hydrochemical conditions in coastal aquifers at this region using Hydrochemical Facies Evolution Diagram (HFE-D) and Geographical Information System mapping. Hydraulic heads and water chemistry were measured at 31 observation wells in four layered aquifers during dry and rainy seasons in early (2005), and more recent (2016), stages of agricultural development. Hydrochemical facies associated with intrusion or freshening stages were mapped in each aquifer after assigning mixing index values to each facies. The position of groundwater freshening and SI phases differed in Holocene, Upper Pleistocene, Middle Pleistocene, and Lower Pleistocene aquifers. The geographic position of freshening and intrusion fronts differ in dry and rainy seasons, and shifted after 11 years of groundwater abstraction in all four aquifers. The spatial and temporal differences in hydrochemical facies distributions according to HFE-D reflect the relative impact of SI in the four aquifers. The study results provide a better understanding of the evolution of groundwater quality associated with SI in a peninsular coastal aquifer system, and highlight the need for improving groundwater quality and management in similar coastal regions.  相似文献   

4.
This study explores linkages between the microbial composition and hydrochemical variables of pristine groundwater to identify active redox conditions and processes. Two confined aquifers underlying the city of Qianjiang in the Jianghan Plain in China were selected for this study, having different recharge sources and strong hydrochemical gradients. Typical methods for establishing redox processes according to threshold concentration criteria for geochemical parameters suggest iron or sulphate reduction processes. High‐throughput 16S rRNA sequencing was used to obtain diversity and taxonomic information on microbial communities. Instead of revealing iron‐ and sulphate‐reducing bacteria, salt‐ and alkali‐tolerant bacteria, such as the phylum Firmicutes and the class Gammaproteobacteria, and in particular, the family Bacillaceae, were dominant in the downstream groundwater of the first aquifer that had high ion concentrations caused by the dissolution of calcite and dolomite; meanwhile, the heterotrophic microaerophilic families Comamonadaceae and Rhodocyclaceae prevailed in the upstream groundwater of the first aquifer. Sulphate‐reducing bacteria were extremely abundant in the upstream groundwater of the second aquifer, as the SO42? concentration was especially high. Methanogens and methanotrophs were predominant in the downstream groundwater of the second aquifer even though the concentration of SO42? was much higher than 0.5 mg L?1. The microbial communities, together with the geochemical parameters, indicated that the upstream region of the first aquifer was suboxic, that Fe(III) and Mn(IV) reductions were not the main redox processes in the downstream groundwater of the first aquifer with high Fe and Mn concentrations, and that the redox processes in the upstream and downstream regions of the second confined aquifer were SO42? reduction and methanogenesis, respectively. This study expands understanding of the linkages between microbial communities and hydrogeochemistry in pristine groundwaters and provides more evidence for identifying active redox conditions and processes.  相似文献   

5.
G. Stamatis  K. Voudouris 《水文研究》2003,17(12):2327-2345
In this paper the groundwater quality of the southern part of Korinthos region (north‐east Peloponnese) is discussed. The geology is characterized by a thick sequence of Neogene marls alternating with sandstones, overlain by superficial Quaternary deposits. The latter consist of a mixture of loose materials such as conglomerates, marly sandstones, sands and clay to silty sands. The area is crossed by a fault system parallel to the coastline, and the Quaternary sediments have formed extended Tyrrhenian marine terraces. Two aquifers have been identified in the area. The first is unconfined and occurs within the Quaternary sediments whereas the other is a deep confined aquifer occurring within the underlying Neogene marl series. Analysis of hydrochemical evolution over the past 30 years has indicated significant deterioration of quality owing to seawater intrusion and nitrate pollution. The various sources of pollution have rendered, to a large extent, shallow groundwater unsuitable not only for potable water supply but also for irrigation purposes. However, this is not the case for the deeper confined aquifer. Statistical analysis was used to explore the evolution of salinization during the years 1968 and 1998. In view of the alarming conditions caused by the documented groundwater quality deterioration, the need for integrated water resources management is stressed to maintain the socio‐economic growth of the region studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Stepwise hydrochemical and isotope-based methodology was adopted to identify mineralization processes, assess the impact of resources overexploitation and flood irrigation, and conceptualize groundwater hydrodynamics in the Djérid aquifer system, Tunisia. The study demonstrates that the main processes controlling groundwater geochemistry are dissolution of evaporates and phosphate-bearing rocks, cation exchange, mixing between high and low TDS end-members, and irrigation return flow. Interpretation of isotope data demonstrates that the deep aquifer was mostly recharged by late Pleistocene palaeowater, while the shallow aquifer is entirely recharged by return flow. The intermediate aquifer groundwater is actually a mixing of early to middle Holocene palaeowater, late Pleistocene deep aquifer palaeowater and return flow waters. The established conceptual model shows that deep and shallow groundwater leakages into the intermediate aquifer are enhanced by the presence of deep faults, the high hydraulic head of the deep aquifer, the overexploitation of the intermediate aquifer, and the long-term flood irrigation.  相似文献   

7.
Surface water is a scarce resource in Namibia with about sixty percent of Namibia's population dependent on groundwater for drinking purposes. With increasing population, the country faces water challenges and thus groundwater resources need to be managed properly. One important aspect of Integrated Water Resources Management is the protection of water resources, including protection of groundwater from contamination and over-exploitation. This study explores vulnerability mapping as a basic tool for protecting groundwater resources from pollution. It estimates groundwater vulnerability to pollution in the upper Niipele sub-basin of the Cuvelai-Etosha in Northern Namibia using the DRASTIC index. The DRASTIC index uses GIS to estimate groundwater vulnerability by overlaying different spatially referenced hydrogeological parameters that affect groundwater contamination. The study assesses the discontinuous perched aquifer (KDP) and the Ohangwena multi-layered aquifer 1 (KOH-1). For perched aquifers, point data was regionalized by a hydrotope approach whereas for KOH-1 aquifer, inverse distance weighting was used. The hydrotope approach categorized different parts of the hydrogeological system with similar properties into five hydrotopes. The result suggests that the discontinuous perched aquifers are more vulnerable than Ohangwena multi-layered aquifer 1. This implies that vulnerability increases with decreasing depth to water table because contaminants have short travel time to reach the aquifer when they are introduced on land surface. The nitrate concentration ranges between 2 and 288 mg/l in perched aquifers while in Ohangwena multi-layered aquifer 1, it ranges between 1 and 133 mg/l. It was observed that perched aquifers have high nitrate concentrations than Ohangwena 1 aquifer, which correlates well with the vulnerability results.  相似文献   

8.
The Nile Delta aquifer has deteriorated in the quality of the groundwater due to domestic, agricultural and industrial activities. In order to examine this, a dataset of thirty-one shallow groundwater samples and four surface water samples were collected in May 2014. The objective of our study is to investigate the hydrochemical characteristics of the groundwater at El-Khanka region in El-Qalubia governorate, southern Nile Delta to discuss the possibility of groundwater use for agricultural purpose. Groundwater types were defined, and the suitability for use in irrigation was evaluated. The factor analysis was conducted to investigate the relationship between the thirteen variables for exploring the loading of them in the model. Then, the principal component analysis was performed to identify the linear combination of variables that account for the greatest amount of common variance. Results showed that groundwater samples are mainly alkaline with an average pH value of 8.60. The total dissolved solids (TDS) range from 350 to 1456 mg/L. The highest concentrations of the anions and cations are sulfate (\(\rm{SO}_4^{2-}\)) and sodium (Na+) respectively. The residual sodium carbonate (RSC) is less than 1.25 meq/L. Also, all groundwater samples are located in good and permissible salinity with TDS < 1500 mg/L. In addition, all samples are located in the low sodium hazard zone where sodium adsorption ratio (SAR) is less than 10. Therefore, it is concluded that, the groundwater is suitable for irrigation use in El-Qalubia Governorate. Four factors with Eigenvalues above 1.0 which correlated to each other contributed to the model with 81% of the total variance and governed the spatial variability of the aquifer.  相似文献   

9.
The study area is located on the western part of the alluvium‐filled gap between the Rajmahal hills on the west and the Garo hills on the east. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Three hydrochemical facies with distinct characteristics have been identified which are dominated in general by alkaline earths and weak acids. The major‐ion chemistry of the area is controlled by weathering of silicate minerals, rainfall recharge, ion‐exchange processes and anthropogenic activities such as irrigation return flow and the application of inorganic fertilizers and pesticides. A stoichiometric approach suggests that mineral dissolution and anthropogenic activities contribute 79% and 21% of the total cations dissolved in groundwater. Principal component analysis (PCA) of 42 groundwater samples using 13 chemical parameters indicates that the combined processes of recharge of groundwater from rainfall, sediment water interaction, groundwater flow, infiltration of irrigation return water (which is arsenic rich due to the use of arsenic‐bearing pesticides, wood preservatives, etc. and the pumping of arsenic‐rich groundwater for agriculture purpose), oxidation of natural or anthropogenic organic matter and the reductive dissolution of ferric iron and manganese oxides play a key role in the evolution of groundwater in the study area. Factor 2 scores, associated with the infiltration of irrigation return water and spatial distribution of arsenic concentration reveal that the groundwater of the municipal area will not be affected by arsenic in the future in spite of heavy groundwater abstraction. Another PCA with geologic, geomorphic, anthropogenic, geochemical and landuse factors indicates that arsenic concentration in groundwater increases with increasing area of mango orchards, sand lithofacies and nitrate and decreases with increasing distance of paleochannel from the monitored well and depth of bore wells. High loading on nitrate may be attributed to the use of fertilizer, pesticides, etc. in mango orchards and agricultural land. High loadings on log pCO2, mango orchards (with negative sign) and phosphate (with positive sign) indicate that mango orchards provide the organic waste material which is decomposed to form organic carbon. The organic carbon undergoes oxidative carbon degeneration by different oxidants and increases the concentration of CO2 in the aquifer. The reducing condition thus developed in the aquifer helps to dissolve the arsenic adsorbed on iron hydroxide or oxy‐hydroxide coated margins of sand, iron rich heavy mineral grain margins, clay minerals and Fe–Mn concretions present in the aquifer matrix. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low‐As groundwater for As mitigation, it was sought across 235 km2 of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one‐third of a study area. The groundwater is in late Pleistocene palaeo‐interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N‐S trending lineaments that are bounded on the east by an As‐polluted deep palaeo‐channel aquifer and separated by a shallower palaeo‐channel aquifer. The depth to the top of the palaeo‐interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo‐interfluvial aquifers are overlain by shallow palaeo‐channel aquifers of gray sand in which groundwater is usually As‐polluted. The palaeosol now protects the palaeo‐interfluvial aquifers from downward migration of As‐polluted groundwater in overlying shallow palaeo‐channel aquifers. The depth to the palaeo‐interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo‐interfluvial aquifers will provide a long‐term source of low‐As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo‐channel aquifers. This option for mitigation is cheap to employ and instantly available.  相似文献   

12.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this research was to refine the actual conceptual model related to the activation of high‐altitude temporary springs within the carbonate Apennines in southern Italy. The research was carried out through geophysical, hydrogeological, hydrochemical and isotopic investigations at the Acqua dei Faggi experimental site during five hydrologic years. The research demonstrated that, in carbonate aquifers where low‐permeability faults cause the aquifer system to be compartmentalized, high‐altitude temporary springs may be recharged by groundwater. In such settings, neither surface water infiltration in karst systems nor perched temporary aquifers play a role of utmost importance. The rare (once or a few time a year) activation of such springs is due to the fact that groundwater unusually reach the threshold head that allows the spring to flow. The activation of the studied high‐altitude temporary spring also depended on relationships between a low‐permeability fault core and a karst system that locally interrupts the low‐permeability barrier. In fact, when the hydraulic head did not reach the karst system, the concentrated head loss within the fault core did not allow the spring to flow, because the groundwater entirely flowed through the fault towards the downgradient compartment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

16.
The possibility and expediency of the use of groundwater from the Upper Permian aquifers of the right-bank area of the Volga River as an alternative to the Cheboksary aquifer are shown on the basis of multipurpose studies using uranium-isotope and microelement hydrogeochemical methods. Currently, the Cheboksary aquifer is under exploration in Quaternary deposits of the left-bank area and is meant for centralized environmentally most safe supply of drinking water to the population of the towns of Cheboksary and Novocheboksarsk.  相似文献   

17.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

18.
The quaternary coastal Collo aquifer in northeast Algeria (NE Algeria) marks an important local water resource supporting domestic, industrial and agricultural activities. The aquifer shows signs of contamination due to the existence of various pollution sources, especially nitrogen compounds. Focusing the local identification of key vulnerable zones and related main hazard types for wise future water management, the present study highlights results from a coupled analysis of the well-established Geographical Information System (GIS)-based GOD (groundwater occurrence, overall aquifer class, depth to groundwater) hazard index analysis and the COST Action 620 plan. Most prevalent hazard types in the study area were identified as the urban/residential areas without public sewage systems, landfill and agricultural/pasturing areas. Regarding the vulnerability analysis particularly the northern aquifer region is endangered, dominated by high (22.4%) and moderate (27.4%) vulnerability classes. Central, western and southern aquifer regions are characterized by low (23.3%) and very low (26.9%) vulnerability classes. Overall, these GOD-derived results are in good agreement with earlier results obtained by the more complex DRASTIC approach. Final risk assessment and validation related to 2014/2015 nitrate sampling campaigns indicate that “high risk” and “very high risk” classes only apply to a small part of the study area in the northern sector (8%), whereas the main part (>60%) broadly affecting the central, western and southern sector only bears a low to very low risk of water pollution. Apart from a future-oriented groundwater abstraction strategy it is recommended to update the evaluation regularly to effectively consider dynamic changes of local anthropogenic activities and hazards.  相似文献   

19.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

20.
Coastal aquifers are at threat of salinization in most parts of the world. This work investigated the seasonal hydrochemical evolution of coastal groundwater resources in Urmia plain, NW Iran. Two recently proposed methods have been used to comparison, recognize and understand the temporal and spatial evolution of saltwater intrusion in a coastal alluvial aquifer. The study takes into account that saltwater intrusion is a dynamic process, and that seasonal variations in the balance of the aquifer cause changes in groundwater chemistry. Pattern diagrams, which constitute the outcome of several hydrochemical processes, have traditionally been used to characterize vulnerability to sea/saltwater intrusion. However, the formats of such diagrams do not facilitate the geospatial analysis of groundwater quality, thus limiting the ability of spatio-temporal mapping and monitoring. This deficiency calls for methodologies which can translate information from some diagrams such Piper diagram into a format that can be mapped spatially. Distribution of groundwater chemistry types in Urmia plain based on modified Piper diagram using GQIPiper(mix) and GQIPiper(dom) indices that Mixed Ca–Mg–Cl and Ca-HCO3 are the dominant water types in the wet and dry seasons, respectively. In this study, a groundwater quality index specific to seawater intrusion (GQISWI) was used to check its efficiency for the groundwater samples affected by Urmia hypersaline Lake, Iran. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to saltwater intrusion during different sampling periods. The HFE-D results appear to be very successful for differentiating variations through time in the salinization processes caused by saltwater intrusion into the aquifer, distinguishing the phase of saltwater intrusion from the phase of recovery, and their respective evolutions. Both GQI and HFE-D methods show that hydrochemical variations can be read in terms of the pattern of saltwater intrusion and groundwater quality status. But generally, in this case (i.e. saltwater and not seawater intrusion) the HFE-D method was presented better efficiency than GQI method (including GQIPiper and GQISWI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号