首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a study on the characteristics of multiple time scales of bankfull discharge and its delayed response to changes of flow conditions using continuous wavelet analysis for data from selected hydrological stations in the Yellow River basin. Results showed that bankfull discharge series had one or two dominant time scales. For example, the Huayuankou station in the lower reach of the Yellow River had two dominant time scales of 19-20 years and 545 years. The dominant time scales of the bankfull discharge series were generally consistent with the dominant time scales of water discharge and sediment concentration series, indicating that the channel morphology inherits the characteristics of the hydrological system in terms of multiple time scales. In addition, the wavelet coefficients of the bankfull discharge series had a phase difference in relation to those of the sediment concentration series, with a delay time that varied from 3 to 16 years at different sites. This delay time or relaxation time is a result of the delayed response of bankfull discharge to flow conditions, which was significant for channel adjustments in response to changes of flow conditions. The findings of the multiple time scales and the delayed response are of importance for further study of channel morphology of fluvial systems.  相似文献   

2.
Delayed response means that channels cannot achieve a new equilibrium state immediately following disruption;the channel requires a response time or relaxation time to reach equilibrium.It follows that the morphological state of fluvial system represents the cumulative effects of all previous disturbances and environmental conditions.A unique feature of the delayed response model for bankfull discharge is that the model is capable of representing the cumulative effects of all previous flow conditions when applied to predict the path/trajectories of bankfull discharge in response to altered flow regimes.In this paper,the delayed response model was modified by readjusting the weight for the initial boundary conditions and introducing a variableβwith respect to time.The modified model was then applied to the bankfull discharge calculations for three selected river reaches of the Yellow River,with each reach having different geomorphic settings and constraints. Results indicated that the modified model can predict accurately the bankfull discharge variation in response to changes in flow discharge and sediment load conditions that have been dramatically altered in the past.Results also demonstrated the strong dependence of current bankfull discharge on the previous years’ flow conditions,with the relaxation time varied from 2 to 14 years,meaning that the bankfull discharge was not only affected by the flow discharge and sediment load in the current year,but also by those in previous 1 to 13 years.Furthermore,the relaxation time of bankfull discharge adjustment was inversely proportional to the long-term average suspended sediment concentrations,and this may be explained by fact that high sediment concentrations may have a high potential to perform geomorphic work and there is more sediment readily available to shape the channel boundary and geometry.  相似文献   

3.
This paper studies relations between bankfull discharge,lateral cross section variation and the incoming flow and sediment condition in the Lower Yellow River using measured data from 1950 to 2003.Since 1950 the bankfull discharge has obviously decreased and the ratio of channel width to flow depth has increased.The critical annual average incoming sediment coefficient(defined as the ratio of sediment concentration to discharge) and discharge at the Huayuankou station are approximately 0.012 and 1,850 m3s-1,respectively,for no accumulative deposition occurring in the reach from Huayuankou to Lijin.On this basis,a mathematical model is used to study the scale of the main channel in the Lower Yellow River and its corresponding bankfull discharge under possible incoming flow and sediment conditions in the near future.The main factors influencing the scale of the main channel are analyzed,and measures to shape and maintain a medium-sized channel are discussed.The results show the effect of various water and sediment combinations released from the Xiaolangdi Reservoir on the shaping of the main channel and suggest that under recent incoming flow and sediment conditions,it is possible to shape and maintain a medium-sized channel with a bankfull discharge of approximate 4,000 m3 s-1.  相似文献   

4.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Upstream damming often causes significant downstream geomorphic adjustments. Remarkable channel changes have occurred in the Jingjiang Reach of the Middle Yangtze River, since the onset of the Three Gorges Project (TGP). Therefore, it is important to investigate the variations in different fluvial variables, for better understanding of the channel evolution characteristics as an example of the Jingjiang Reach. Recent geomorphic adjustments in the study reach have been investigated quantitatively, including variations in sediment rating curve, fluvial erosion intensity, channel deformation volume and bankfull channel geometry. These fluvial variables adjusted in varying degrees in response to the altered flow and sediment regime caused by the TGP operation. A focus of this study has been especially on variation in the bankfull channel geometry. Calculated bankfull dimensions at section‐ and reach‐scale indicate that: (i) there were significant bank‐erosion processes in local regions without bank‐protection engineering, with empirical relations being developed to reproduce the variation in bankfull widths at four typical sections; (ii) the variation in the reach‐scale channel geometry occurred mainly in the component of bankfull depth, owing to the construction of large‐scale bank‐revetment works, with the depth increasing from 13.7 m in 2002 to 15.0 m in 2014, and with an increase in the corresponding bankfull area of about 11%; and (iii) the reach‐scale bankfull channel dimensions responded to the previous 5‐year average fluvial erosion intensity during flood seasons at Zhicheng, with higher correlations for the depth and area being obtained when calibrated by the measurements in 2002–2012. Furthermore, these relations developed for the section‐ and reach‐scale bankfull channel geometry were also verified by the observed data in 2013–2014, with encouraging results being obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

7.
We consider the evolution of the hydraulic geometry of sand-bed meandering rivers. We study the difference between the timescale of longitudinal river profile adjustment and that of channel width and depth adjustment. We also study the effect of hydrological regime alteration on the evolution of bankfull channel geometry. To achieve this, a previously developed model for the spatiotemporal co-evolution of bankfull channel characteristics, including bankfull discharge, bankfull width, bankfull depth and down-channel bed slope, is used. In our modelling framework, flow variability is considered in terms of a specified flow duration curve. Taking advantage of this unique feature, we identify the flow range responsible for long-term bankfull channel change within the specified flow duration curve. That is, the relative importance of extremely high short-duration flows compared to moderately high longer duration flows is examined. The Minnesota River, MN, USA, an actively meandering sand-bed stream, is selected for a case study. The longitudinal profile of the study reach has been in adjustment toward equilibrium since the end of the last glaciation, while its bankfull cross-section is rapidly widening due to hydrological regime change in the last several decades. We use the model to demonstrate that the timescale for longitudinal channel profile adjustment is much greater than the timescale for cross-sectional profile adjustment due to a lateral channel shift. We also show that hydrological regime shift is responsible for the recent rapid widening of the Minnesota River. Our analysis suggests that increases in the 5–25% exceedance flows play a more significant role in recent bankfull channel enlargement of the Minnesota River than increase in either the 0.1% exceedance flow or the 90% exceedance flow. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
三峡工程运用后城陵矶-武汉河段河床调整及崩岸特点   总被引:1,自引:1,他引:0  
为研究近期城汉河段河床调整及崩岸特点,利用实测水沙及地形等资料,采用河段平均的方法,计算了城汉河段断面形态的调整过程,主要包括平滩河槽形态调整及其与前期水沙条件之间的关系.计算结果表明:城汉河段平滩河宽由2003年的1710 m增加至2016年的1732 m,增幅为1.28%,平滩水深由2003年的16.47 m增加至2016年的17.95 m,增幅为9.0%;白螺矶、界牌、簰洲及武汉等河段河床调整以纵向冲深为主,但陆溪口河段河床调整横向展宽与纵向冲深同步发展;2006-2016年城汉河段多年平均崩退速率为5.5 m/a,崩岸总长19.6 km,占岸线总长的8.3%,右岸占55.3%.簰洲河段岸线崩长占城汉河段岸线崩退总长的75.9%.此外还分析了河床边界与水沙条件等因素对重点河段(簰洲河段)崩岸过程的影响,来水来沙条件占主导地位,局部区域崩岸的发生依赖于河床边界条件;建立了典型断面平滩河宽与前期水沙条件之间的经验关系,较好地反映了水沙条件变化对崩岸过程的影响.  相似文献   

9.
1. INTROOUCnONFor a long time, the Lower Yellow River has been aggtading. As a result, the river bed becomesmuch higher than the adjacent land beyond the levees and poses a threat to the safety of the GreatNorthern Plain of China. Since the founding of the New China, great success has been achieved insafeguarding the levee for forty years. The trend of aggravation in lower reaches however is still Soingon and is at a rate even higher than before. That makes the flood control on the LO…  相似文献   

10.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The equilibrium relations for water and sediment transport refer to the relative balance of sediment transport and the relative stability of river courses formed by the automatic adjustment of riverbeds.This is the theoretical basis for the comprehensive management of sediment in the Yellow River.Based on the theories of sediment carrying capacity and the delayed response of riverbed evolution,in this study,the equilibrium relations for water and sediment transport in the Yellow River are established.These relations include the equilibrium relationships between water and sediment transport and bankfull discharge in the upper and lower Yellow River and between water and sediment transport and the Tongguan elevation in the middle Yellow River.The results reveal that for the Ningmeng reach,the Tongguan reach,and the lower Yellow River,erosion and deposition in the riverbeds are adjusted automatically,and water and sediment transport can form highly constrained equilibrium relationships.These newly established equilibrium relationships can be applied to calculate the optimal spatial allocation scheme for sediment in the Yellow River.  相似文献   

12.
This paper analyses the processes and mechanisms of a three‐stage channel adjustment over a cycle of the Yellow River mouth channel extension based on data comprising hydrologic measurements and channel geometric surveys. Rapid siltation in the mouth channel takes place in the young stage when the channel is being built by deposits and in the old stage when the channel cannot further adjust itself to keep sediment transport in equilibrium. It is disclosed that the bankfull width–depth ratio, bed material size and slope decrease in the young and mature stages but do not change in the old stage. The reduction of bankfull width–depth ratio and bed material size during the young and mature stages is found to be able to offset the effect of the slope reduction on sediment transport due to continuous mouth progradation. They reach their limits in old stage, and a constant slope is kept by unceasing sediment accumulation. The grain size composition of incoming sediment and the fining mechanism are responsible for the occurrence of lower limit of bed material size. The reason for the existence of a limit of bankfull cross‐sectional shape is that the large flows can fully transport the sediment load they are carrying, and siltation in the channel in the old stage takes place mainly in the low flows. It is suggested that the bankfull discharge plays an important role in shaping the channel but that the entire channel form is the product of both the large and low flows plus the effects of interaction between them. Channel pattern change shows a process from a braided pattern in the young stage to a straight pattern in the mature and old stages, and the straight channel becomes gradually sinuous. The occurrence and transformation of the channel patterns are supported by two planform predictors, but are also facilitated by some other conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The lower Yellow River channel was maintained by artificial levees between 1580 and 1849. During this period, 280 levee breaches occurred. To estimate sediment storage on the floodplains outside the levees, a regression model with a decadal time step was developed to calculate the outflow ratio for the years when levee breaching occurred. Uncertainty analysis was used to identify the likely outflow ratio. Key variables of the model include annual water discharge, a proxy for levee conditions, and potential bankfull discharge of the channel before flood season. Uncertainty analysis reveals an outflow ratio of 0.35–0.56. We estimate that during this period, 18.8–30.1% of the total ~312 Gt of sediment load was deposited on the floodplains outside the levees. Human-accelerated erosion in the Loess Plateau caused a 4-fold increase in sediment delivery to the lower Yellow River, which could not be accommodated by channel morphodynamic changes. As a result, 21.2–27.5% of the total sediment load was deposited within the levees, creating a super-elevated channel bed that facilitated an uncommonly high breach outflow ratio. Hence, the factor of a large super-elevation relative to the mean main channel depth should be considered when designing diversions to restore floodplains. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
This research builds on the concept of hydraulic geometry and presents a methodology for estimating bankfull discharge and the hydraulic geometry coefficients and exponents for a station using limited data; only stage‐discharge and Landsat imagery. The approach is implemented using 82 streamflow gauging locations in the Amazon Basin. Using the estimated values for the hydraulic geometry relations, bankfull discharge, discharge data above bankfull and upstream drainage area at each site, relationships for estimating channel and floodplain characteristics as a function of drainage area are developed. Specifically, this research provides relationships for estimating bankfull discharge, bankfull depth, bankfull width, and floodplain width as a function of upstream drainage area in the Amazon Basin intended for providing reasonable cross‐section estimates for large scale hydraulic routing models. The derived relationships are also combined with a high resolution drainage network to develop relationships for estimating cumulative upstream channel lengths and surface areas as a function of the specified minimum channel width ranging from 2 m to 1 km (i.e. threshold drainage areas ranging from 1 to 431,000 km2). At the finest resolution (i.e. all channels greater than 2 m or a threshold area of 1 km2), the Amazon Basin contains approximately 4.4 million kilometers of channels with a combined surface area of 59,700 km2. The intended use of these relationships is for partitioning total floodable area (channels versus lakes and floodplain lakes) obtained from remote sensing for biogeochemical applications (e.g. quantifying CO2 evasion in the Amazon Basin). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Headwater streams drain the majority of most landscapes, yet less is known about their morphology and sediment transport processes than for lowland rivers. We have studied headwater channel form, discharge and erosive power in the humid, moderate‐relief Valley and Ridge and Blue Ridge provinces of the Appalachian Mountains. Field observations from nine headwater (<2 km2 drainage area), mixed bedrock–alluvial channels in a variety of boundary conditions demonstrate variation with respect to slope‐area channel initiation, basic morphology, slope distribution, hydraulic geometry, substrate grain size and role of woody debris. These channels display only some of the typical downstream trends expected of larger, lowland rivers. Variations are controlled mainly by differences in bedrock resistance, from the formation level down to short‐wavelength, outcrop‐scale variations. Hydrologic modeling on these ungauged channels estimates the recurrence of channel‐filling discharge and its ability to erode the channel bed. Two‐year recurrence discharge is generally larger and closer to bankfull height in the Valley and Ridge, due to low soil infiltration capacity. Discharge that fills the channel to its surveyed bankfull form is variable, generally exceeding two‐year flows at small drainage areas (<0·5 km2) and being exceeded by them at greater drainage areas. This suggests bankfull is not controlled by the same recurrence storm throughout a channel or physiographic region. Stream power and relative competence are also variable. These heterogeneities contrast relations observed in larger streams and illustrate the sensitivity of headwater channels to local knickpoints of resistant bedrock and armoring of channels by influx of coarse debris from hillslopes. The general lack of predictable trends or functional relationships among hydraulic variables and the close coupling of channel form and function with local boundary conditions indicate that headwater streams pose a significant challenge to landscape evolution modeling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
《国际泥沙研究》2020,35(6):651-658
Scientific evaluation of the sediment allocation effects in the Yellow River plays an important role in the comprehensive harnessing of the Yellow River. A new evaluation index system for sediment allocation has been established using the Analytic Hierarchy Process, and six main evaluation indexes have been selected for this study. The calculation methods and evaluation criteria of each evaluation index are proposed. The evaluation criterion of bankfull discharge in the upper reach is 2,000 m3/s, that of Tongguan elevation in the middle reach is 325.7 m, and that of bankfull discharge in the lower reach is 4,000 m3/s. The evaluation criteria of water volume and sediment volume into the Yellow River are 25 billion m3/a and 300 million t/a, respectively, and that of sediment volume into the sea to maintain stability of the estuary is 130–260 million t/a. The comprehensive evaluation method and grade index are proposed, and the effect of sediment allocation in the Yellow River from 1960 to 2015 is evaluated. The comprehensive evaluation grades in different periods are determined. The evaluation results objectively reflect the situation of sediment allocation in the Yellow River, and the new comprehensive evaluation method can be applied to evaluate the sediment allocation scheme of the Yellow River in the future.  相似文献   

17.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

18.
I. CHAncEL CHANGal m THE FLOODED AREA ArVER BREACHING AT TONGWAXIANG AND THEIR IMPACTSIn mid--June of 1855 a great flood occurred in the lower reaches of the Yellow River. The findmainly came down from the main stem of the river and itS tributary Qinhe River. In the meantimethe riparian area of the Yellow River had just been subjected to a heavy rain, and large amountS of water from mountains and hills were flowing into the river and lakes were also full. The Weis…  相似文献   

19.
lCOMPOSITIONOFTHE"92.8"FLOODThreerainstormsoccurredfrom7ththrough13,,,August,1992inShaanxiProvince,diStributingfromnorthtosouthinsequence.Therainfallareacoveredtheregionsofintensivesoilerosion,'wheretheaveragerateoferosionis10,000-15',000ton/kmZ'year.Fig.IshowsisohyetsofrainfallintensityinthecatchmentoftheMiddleYellowRiVerdepictingthedistributionoftherainstormsfrom7thto13,,,August,1992(thehydrologicalBureauYRCC,1992).ThecenterofthefirstrainstormwaslocatedattheYikezhaomengPrefec…  相似文献   

20.
Estuarine environments are influenced by both river flows and oceanic tidal movement of water, sediment, and nutrients, often forming ecosystems that are rich in resources and biodiversity. The Yellow River once carried the world’s largest sediment load, but artificial structures have transformed its hydrodynamic processes. An annual Water-Sediment Regulation Scheme(WSRS) was introduced to flush accumulated sediment from the Xiaolangdi Reservoir, which provides flood control and water storage.Ho...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号