首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

2.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

3.
The paper reviews a number of possible fast and slow hydrological flow mechanisms to account for rapid runoff generation within a catchment. A new interpretation of the kinematic wave process is proposed which develops some of these concepts to explain rapid subsurface flow from a watershed. Evidence for the process is provided by the results from a laboratory soil core experiment and an investigation of the hydrology of a Dartmoor hillslope. A tension response was monitored in the soil core in which pressure waves were propagated downwards and expelled water from the base. The transmission of the wave down the core was considerably faster than the movement of a chloride tracer. The concept of this kinematic wave process and associated water flux was then extended to the Dartmoor watershed. Raindrops reaching the wet soil surface caused pressure waves to travel laterally downslope. During large rainstorms, the hillslope became hydrologically highly connected and the pressure waves forced existing water from seepage faces into the saturated area adjacent to the stream, contributing substantially to the stream discharge. A kinematic contributing area was defined, as determined by both rainfall–runoff ratios and geostatistical analyses of hillslope soil moisture contents, which extended over at least 65% of the catchment area. This kinematic wave theory is consistent with results of translatory flow and macropore flow models, and stable isotope field studies of ‘old/new’ water. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882–1676 mm of rainfall over a ~5·5 m × 12 m area on the lower hillslope during ~8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day?1 applied during the later part of the sprinkling experiments when soil moisture changes were small, <14 mm day?1 was collected at the trench and <4 mm day?1 was transpired by the trees, with residual bedrock leakage of >175 mm day?1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time‐scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Tropical montane cloud forests (TMCF) receive additional (‘occult’) inputs of water from fog and wind-driven rain. Together with the concomitant reduction in evaporative losses, this typically leads to high soil moisture levels (often approaching saturation) that are likely to promote rapid subsurface flow via macropores. Although TMCF make up an estimated 6.6% of all remaining montane tropical forest and occur mostly in steep headwater areas that are protected in the expectation of reduced downstream flooding, TMCF hillslope hydrological functioning has rarely been studied. To better understand the hydrological response of a supra-wet TMCF (net precipitation up to 6535 mm y−1) on heterogeneously layered volcanic ash soils (Andosols), we examined temporal and spatial soil moisture dynamics and their contribution to shallow subsurface runoff and stormflow for a year (1 July 2003–30 June 2004) in a small headwater catchment on the Atlantic (windward) slope near Monteverde, NW Costa Rica. Particular attention was paid to the partitioning of water fluxes into lateral subsurface flow and vertical percolation. The presence of a gravelly layer (C-horizon) at ~25 cm depth of very high hydraulic conductivity (geometric mean: 502 mm h−1) intercalated between two layers of much lower conductivity (7.5 and 15.7 mm h−1 above and below, respectively), controlled both surface infiltration and delayed vertical water movement deeper into the soil profile. Soil water fluxes during rainfall were dominated by rapid lateral flow in the gravelly layer, particularly at high soil moisture levels. In turn, this lateral subsurface flow controlled the magnitude and timing of stormflow from the catchment. Stormflow amount increased rapidly once topsoil moisture content exceeded a threshold value of ~0.58 cm3 cm−3. Responses were not affected appreciably by rainfall intensity because soil hydraulic conductivities across the profile largely exceeded prevailing rainfall intensities.  相似文献   

8.
Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and chloride. These were combined with hydrometric information on streamflow, return flow, precipitation, throughfall and soil moisture to distinguish water following different flow paths. Geo‐electric sounding was used to survey the subsurface structure of the catchment, revealing a weathering front that coincided with the elevation of the stream channel instead of running parallel to surface topography. The hydrometric data were used in combination with soil physical data, a one‐dimensional soil water model (VAMPS ) and a three‐component chemical mass‐balance mixing model to describe the stormflow response of the catchment. It is inferred that most stormflow travelled through macropores in the top 20 cm of the soil profile. During a large event, saturation overland flow also accounted for a considerable portion of the stormflow, although it was not possible to quantify the associated volume fully. Although the mass‐balance mixing model approach gave valuable information about the various flow paths within the catchment, it was not possible to distill the full picture from the model alone; additional hydrometric and soil physical evidence was needed to aid in the interpretation of the model results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region.  相似文献   

11.
Hillslope hydrological modelling is considered to be of great importance for the understanding and quantification of hydrological processes in hilly or mountainous landscapes. In recent years a few comprehensive hydrological models have been developed at the hillslope scale which have resulted in an advanced representation of hillslope hydrological processes (including their interactions), and in some operational applications, such as in runoff and erosion studies at the field scale or lateral flow simulation in environmental and geotechnical engineering. An overview of the objectives of hillslope hydrological modelling is given, followed by a brief introduction of an exemplary comprehensive hillslope model, which stimulates a series of hydrological processes such as interception, evapotranspiration, infiltration into the soil matrix and into macropores, lateral and vertical subsurface soil water flow both in the matrix and preferential flow paths, surface runoff and channel discharge. Several examples of this model are presented and discussed in order to determine the model's capabilities and limitations. Finally, conclusions about the limitations of detailed hillslope modelling are drawn and an outlook on the future prospects of hydrological models on the hillslope scale is given.The model presented performed reasonable calculations of Hortonian surface runoff and subsequent erosion processes, given detailed information of initial soil water content and soil hydraulic conditions. The vertical and lateral soil moisture dynamics were also represented quite well. However, the given examples of model applications show that quite detailed climatic and soil data are required to obtain satisfactory results. The limitations of detailed hillslope hydrological modelling arise from different points: difficulties in the representations of certain processes (e.g. surface crusting, unsaturated–saturated soil moisture flow, macropore flow), problems of small‐scale variability, a general scarcity of detailed soil data, incomplete process parametrization and problems with the interdependent linkage of several hillslopes and channel–hillslope interactions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Over a period of 12 months, soil moisture content and potential was monitored in an annual‐grass‐dominated 20 ha catchment in order to determine flow paths leading to exfiltration at the catchment outlet. Water was found to enter the catchment valley either through flow originating in the slopes or through surface infiltration during rainfall events. Although subsurface flow from the slopes to the catchment outlet occurred throughout the year, surface recharge was restricted to a few events during the wet season. In the deeper saturated profile of the valley, flow was directed upwards along the valley edges and gradually became horizontal towards the central axis of the valley. During the peak of the rainfall season, horizontal flow close to the catchment outlet intercepted the gradually sloping surface, resulting in exfiltration. Plants influenced the hydrology of the catchment by removing moisture from the root zone during spring and early summer, resulting in evapotranspiration losses from the vadose zone. Heterogeneities within the valley soil were evident as variable‐permeability layers that resulted in a seasonally confined water table within the valley. This investigation shows that the vadose zone plays an important role in redistributing surface recharge and emphasizes the importance of accounting for effective moisture in low‐yielding catchments with ephemeral surface runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
14.
We studied the temporal patterns of tracer throughput in the outflow of large (30 cm diameter by 38 cm long) undisturbed cores from the Panola Mountain Research Watershed, Georgia. Tracer breakthrough was affected by soil structure and rainfall intensity. Two rainfall intensities (20 and 40 mm hr−1) for separate Cl and Br amended solutions were applied to two cores (one extracted from a hillslope soil and one extracted from a residual clay soil on the ridge). For both low and high rainfall intensity experiments, preferential flow occurred in the clay core, but not in the hillslope core. The preferential flow is attributed to well‐developed interpedal macrochannels that are commonly found in structured clay soils, characteristic of the ridge site. However, each rainfall intensity exceeded the matrix infiltration capacity at the top of the hillslope core, but did not exceed the matrix infiltration capacity at the middle and bottom of the hillslope core and at all levels in the clay core. Localized zones of saturation created when rainfall intensity exceeds the matrix infiltration capacity may cause water and tracer to overflow from the matrix into macrochannels, where preferential flow occurs to depth in otherwise unsaturated soil. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

16.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   

17.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

18.
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near‐surface processes is relevant to issues of runoff generation, groundwater–surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3‐D physics‐based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub‐surface flow and transport simulator. A recent investigation of sub‐surface flow within this experimental hillslope has generated important knowledge of threshold rainfall‐runoff response and its relation to patterns of transient water table development. This work has identified components of the 3‐D sub‐surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub‐surface stormflow. Here, we test the ability of a 3‐D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall‐runoff response and internal transient sub‐surface stormflow dynamics. We also provide a transparent illustration of physics‐based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field‐based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub‐surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Distributed erosion models, which simulate the physical processes of water flow and soil erosion, are effective for predicting soil erosion in forested catchments. Although subsurface flow through multiple pathways is dominant for runoff generation in forested headwater catchments, the process-based erosion model, Geo-spatial interface for Water Erosion Prediction Project(Geo WEPP), does not have an adequate subsurface component for the simulation of hillslope water flow. In the current study, t...  相似文献   

20.
Lateral subsurface flow is generally assumed to occur as a result of the development of a saturated zone above a low‐permeability interface such as at the soil–bedrock contact, and it is often augmented by macropore flow. Our objective was to evaluate the development of lateral subsurface flow and soil saturation at a semiarid ponderosa pine forest in New Mexico with respect to the conceptual model of saturation building above the soil–bedrock contact. At this site, we have long‐term observations of the water budget components, including lateral flow. A 1·5 m deep by 7 m long trench was constructed to observe lateral subsurface flow and development of saturation directly. Our observations are based on flow resulting from a melting snowdrift. The edge of the drift was about 7 m upslope from the trench. Lateral subsurface flow only occurred from root macropores in the Bt soil horizon. Saturation developed and grew outward from flowing root macropores, rather than growing upward from the soil–bedrock interface. This macropore‐centred saturation resulted in a highly heterogeneous distribution of water content until enough macropores began flowing and individual macropore saturated zones grew large enough to coalesce and saturate large volumes of the soil. Our observations are based on one snowmelt event and a relatively short hillslope flow path, and thus do not represent a full range of hydrologic conditions. Nevertheless, the observed behaviour did not conform to the traditional model of soil–bedrock control of saturation and lateral flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号