首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The glacially formed northeastern German lowlands are characterized by extensive floodplains, often interrupted by relatively steep moraine hills. The hydrological cycle of this area is governed by the tight interaction of surface water dynamics and the corresponding directly connected shallow groundwater aquifer. Runoff generation processes, as well as the extent and spatial distribution of the interaction between surface water and groundwater, are controlled by floodplain topography and by surface water dynamics. A modelling approach based on extensive experimental analyses is presented that describes the specific water balance of lowland areas, including the interactions of groundwater and surface water, as well as reflecting the important role of time‐variable shallow groundwater stages for runoff generation in floodplains. In the first part, experimental investigations of floodplain hydrological characteristics lead to a qualitative understanding of the water balance processes and to the development of a conceptual model of the water balance and groundwater dynamics of the study area. Thereby model requirements which allow for an adequate simulation of the floodplain hydrology, considering also interactions between groundwater and surface water have been characterized. Based on these analyses, the Integrated Modelling of Water Balance and Nutrient Dynamics (IWAN) approach has been developed. This consists of coupling the surface runoff generation and soil water routines of the deterministic, spatially distributed hydrological model WASIM‐ETH‐I with the three‐dimensional finite‐difference‐based numerical groundwater model MODFLOW and Processing MODFLOW. The model was applied successfully to a mesoscale subcatchment of the Havel River in northeast Germany. It was calibrated for two small catchments (1·4 and 25 km2), where the importance of the interaction processes between groundwater and surface waters and the sensitivity of several controlling parameters could be quantified. Validation results are satisfying for different years for the entire 198 km2 catchment. The model approach was further successfully tested for specific events. The experimental area is a typical example of a floodplain‐dominated landscape. It was demonstrated that the lateral flow processes and the interactions between groundwater and surface water have a major importance for the water balance and periodically superimposed on the vertical runoff generation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Topographic indices may be used to attempt to approximate the likely distribution of variable source areas within a catchment. One such index has been applied widely using the distribution function catchment model, TOPMODEL, of Beven and Kirkby (1979). Validation of the spatial predictions of TOPMODEL may be affected by the algorithm used to calculate the model's topographic index. A number of digital terrain analysis (DTA) methods are therefore described for use in calculating the TOPMODEL topographic index, In(a/tanβ) (a = upslope contributing area per unit contour; tanβ = local slope angle). The spatial pattern and statistical distribution of the index is shown to be substantially different for different calculation procedures and differing pixel resolutions. It is shown that an interaction between hillslope contributing area accumulation and the analytical definition of the channel network has a major influence on calculated In(a/tanβ) index patterns. A number of DTA tests were performed to explore this interaction. The tests suggested that an ‘optimum’ channel initiation threshold (CIT) may be identified for positioning river headwaters in a raster digital terrain model (DTM). This threshold was found to be dependent on DTM grid resolution. Grid resolution is also suggested to have implications for the validation of spatial model predictions, implying that ‘optimum’ TOPMODEL parameter sets may be unique to the grid scale used in their derivation. Combining existing DTA procedures with an identified CIT, a procedure is described to vary the directional diffusion of contributing area accumulation with distance from the channel network.  相似文献   

4.
Groundwater movements in volcanic mountains and their effects on streamflow discharge and representative elementary area (REA) have remained largely unclear. We surveyed the discharge and chemical composition of spring and stream water in two catchments: the Hontani river (NR) catchment (6.6 km2) and the Hosotani river (SR) catchment (4.0 km2) at the southern part of Daisen volcano, Japan. Daisen volcano is a young volcano (17 × 103 years) at an early stage of erosion. Our study indicated that deep groundwater that moved through thick lava and pyroclastic flows and that could not be explained by shallow movements controlled by surface topography contributed dominantly to streamflow at larger catchment areas. At the NR catchment, the deep groundwater contribution clearly increased at a catchment boundary defined by an area of 3.0 km2 and an elevation of 800 m. At the SR catchment, the contribution deep groundwater to the stream also increased suddenly at a boundary threshold of 2.0 and 700 m. Beyond these thresholds, the contributions of deep bedrock groundwater remained constant, indicating that the REA is between 2 and 3 km2 at the observed area. These results indicate that the hydrological conditions of base flow were controlled mainly by the deep bedrock groundwater that moved through thick lava and pyroclastic flows in the undissected volcanic body of the upper part of the catchment. Our study demonstrates that deep and long groundwater movements via a deep bedrock layer including thick deposits of volcanic materials at the two catchments on Daisen volcano strongly determined streamflow discharge instead of the mixing of small‐scale hydrological conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Critical zone influences on hydrologic partitioning, subsurface flow paths and reactions along these flow paths dictate the timing and magnitude of groundwater and solute flux to streams. To isolate first‐order controls on seasonal streamflow generation within highly heterogeneous, snow‐dominated basins of the Colorado River, we employ a multivariate statistical approach of end‐member mixing analysis using a suite of daily chemical and isotopic observations. Mixing models are developed across 11 nested basins (0.4 to 85 km2) spanning a gradient of climatological, physical, and geological characteristics. Hydrograph separation using rain, snow, and groundwater as end‐members indicates that seasonal contributions of groundwater to streams is significant. Mean annual groundwater flux ranges from 12% to 33% whereas maximum groundwater contributions of 17% to 50% occur during baseflow. The direct relationship between snow water equivalent and groundwater flux to streams is scale dependent with a trend toward self‐similarity when basins exceed 5.5 km2. We find groundwater recharge increases in basins of high relief and within the upper subalpine where maximum snow accumulation is coincident with reduced conifer cover and lower canopy densities. The mixing model developed for the furthest downstream site did not transfer to upstream basins. The resulting error in predicted stream concentrations points toward weathering reactions as a function of source rock and seasonal shifts in flow path. Additionally, the potential for microbial sulfate reduction in floodplain sediments along a low‐gradient, meandering portion of the river is sufficient to modify hillslope contributions and alter mixing ratios in the analysis. Soil flushing in response to snowmelt is not included as an end‐member but is identified as an important mechanism for release of solutes from these mountainous watersheds. End‐member mixing analysis used in combination with high‐frequency observations reveals important aspects of catchment hydrodynamics across scale.  相似文献   

7.
The importance and interaction of various hydrological pathways and identification of runoff source areas involved in solute transport are still under considerable debate in catchment hydrology. To reveal stormflow generating areas and flow paths, hydrometric behaviour of throughfall, soil water from various depths, runoff, and respective concentrations of the environmental tracers 18O, Si, K, SO4 and dissolved organic carbon were monitored for a 14‐week period in a steep headwater catchment in the Black Forest Mountains, Germany. Two stormflow hydrographs were selected and, based on 18O and Si, chemically separated into three flow components. Their sources were defined using mixing diagrams. Additional information about stormflow generating mechanisms was derived from recession analyses of the basin's complete 5‐year hydrograph record. By providing insight into storage properties and residence times of outflowing reservoirs of the basin, recession analysis proved to be a valuable tool in runoff model conceptualization. Its results agreed well with hydrometric and hydrochemical data. Supported by evaluation of 30 hillslope soil profiles a coherent concept of stormflow generation could be derived: whereas in many steeply sloped basins in the temperate region soil water from hillslopes appears to have an immediate effect on the shape of the stormflow hydrograph, its role at this basin is basically restricted to the recharge of the groundwater reservoir in the near‐channel area. Storm hydrograph peaks appear to be derived from a small direct runoff component supplemented by a fast delivery of baseflow from the groundwater reservoir in the valley bottom. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Water resources development and exploitation are critical for a viable and sustainable modern human society. Unfortunately, however, there is a considerable water storage depletion and environmental degradation in especially (semi)‐arid river basins due to the forces of population growth, urbanization, industrialization and intensive agricultural irrigation. Addressing water storage depletion is not only a question of research, but is very much a question of developing appropriate countermeasures to preserve valuable/fragile ecological systems. As one such effort, this study analyzes the hydrology and storage in Baiyangdian Lake as affected by water resources development and exploitation in the Baiyangdian Lake Catchment of Northern China. Three models, WetSpass (Water and Energy Transfer between Soil, Plants and the Atmosphere under quasi‐Steady State), WATBUD (Water Budget) and MODFLOW (USGS three‐dimensional finite‐difference groundwater flow model) were used in combination to simulate the hydrogeologic conditions in the lake catchment for 1956–2008. The model‐calibrated values are in good agreement with the measured values, with R2 > 0·8 and RMSE < 10% of measured values. Runoff, the primary source of water for the lake storage, has steadily declined due mainly to multiple dam construction and reservoir impoundments in the headwater valleys and rivers in the catchment. In addition to dwindling runoff, groundwater levels have declined considerably due to over‐abstraction, mainly for agricultural irrigation. Additionally, evaporation or evapotranspiration is increasing in the lake catchment due to rising temperatures. The worsening hydrological conditions, amid the harsh semi‐arid climate, have resulted in considerable depletion of the storage and hydrology of Baiyangdian Lake. Sustainable countermeasures like agricultural water‐saving and infusion of external water (e.g., via by the South–North Water Transfer Project) could be a viable option for preserving not only the hydrology of the lake catchment, but also storage in Baiyangdian Lake. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
典型草原露天煤矿区地下水-湖泊系统演化   总被引:1,自引:0,他引:1  
由于气候干旱、大量疏排地下水导致草原露天煤矿区普遍存在着水文循环失调、土壤沙化、草地退化等环境地质问题.本研究以呼伦贝尔草原伊敏露天煤矿为研究对象,在对矿区地下水湖泊系统调查分析的基础上,结合水文、气象及遥感影像等数据,应用水均衡原理构建矿区地下水位湖泊面积响应机制的数学模型,并利用此模型预测分析矿区开发对伊敏盆地内湖泊面积的影响.结果表明:煤矿开采35年来,伊敏盆地湖群数量由开采前(1982年)的5个变为如今(2017年)的2个,湖泊总面积由原来的6.94 km 2萎缩到1.12 km 2;矿区地下水湖泊关系由自然状态下的地下水补给湖泊型向湖泊补给地下水型演化;本文建立的地下水湖泊耦合数学模型可较好地对湖泊面积进行预测,在气候因素波动不大、矿山开发稳定的状况下,该矿闭矿时(2045年)研究区湖泊面积将萎缩至0.56 km^2.  相似文献   

10.
This paper analyses measured data from two small tropical watersheds: one in a semiarid (Aiuaba, Brazil, 12·0 km2, 5 years of measurements) and another in a humid environment (Jaruco, Cuba, 43·5 km2, 21 years of measurements). The watersheds are similar with respect to catchment area (tens of km2), potential evaporation (2·1–2·6 m year?1), temperature (22–30 °C) and relief (mild hillslope steepness); but show considerable hydrological discrepancies: average precipitation in the humid watershed is two times higher; average river discharge (mm year?1) is five times higher; and surface water availability (mm year?1) is 14 times higher than in the semiarid watershed. Long‐term operation of hypothetical surface reservoirs in both basins is simulated. The analysis shows that 73% of the average river discharge are available (with 90% annual reliability) in the humid watershed, against only 28% in the semiarid. The main cause of this difference is the excess evaporation, which consumes 55% of the stored water in the semiarid reservoir, but only 12% in the humid one. The research concludes that: (1) although precipitation indicators are higher in the humid area, they are of the same order of magnitude as in the semiarid; and (2) fluvial‐regime and water‐availability variables are more than one order of magnitude higher in the humid basin, which shows a multiplication effect of these hydrological processes. Such major hydrological differences, despite the similarities between the two tropical watersheds, show the importance of further investigations in the field of comparative hydrology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
There is considerable interest in large‐scale spatial patterns of sediment transport in catchments, and this topic is often approached using terrain‐based modelling. In such models topography influences the discharge of overland flow and its sediment transport capacity. The sediment transport capacity of overland flow is commonly expressed as a power function of slope and discharge (i.e. qs=k1qβSγ). The relationship between discharge and contributing area can also be expressed as a power function. Several reviews reveal a limited range of values for the two exponents β and γ. In this paper we examine the sensitivity of catchment‐scale patterns of sediment delivery to valley floors to a range of sediment transport capacity and hillslope hydrology parameterizations, using two catchments on the southern tablelands of New South Wales. The results indicate that, over the limited range of β and γ identified within the literature, sediment deliveries to valley floors across the two catchments are similar for all but one of five sediment transport capacity relationships. The patterns are dominated by the trend in slope through each catchment. The sensitivity to hillslope hydrology of predicted sediment delivery patterns is strong in the catchment with systematic variation in unit hillslope area, and weak in the catchment for which there are no systematic trends in unit hillslope area. We believe there is less experimental evidence to restrict choice of hillslope hydrology parameters than there is for sediment transport capacity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Evapotranspiration (ET) plays a crucial role in catchment water budgets, typically accounting for more than 50% of annual precipitation falling within temperate deciduous forests. Groundwater ET is a portion of total ET that occurs where plant roots extend to the capillary fringe above the phreatic surface or induce upward movement of water from the water table by hydraulic redistribution. Groundwater ET is spatially restricted to riparian zones or other areas where the groundwater is accessible to plants. Due to the difficulty in measuring groundwater ET, it is rarely incorporated explicitly into hydrological models. In this study, we calibrated Topographic Model (TOPMODEL) using a 14‐year hydrograph record and added a groundwater ET pathway to derive a new model, Groundwater Evapotranspiration TOPMODEL (GETTOP). We inspected groundwater elevations and stream flow hydrographs for evidence of groundwater ET, examined the relationship between groundwater ET and topography, and delineated the area where groundwater ET is likely to take place. The total groundwater ET flux was estimated using a hydrological model. Groundwater ET was larger where the topography was flat and the groundwater table was shallow, occurring within about 10% of the area in a headwater catchment and accounting for 6 to 18% of total annual ET. The addition of groundwater ET to GETTOP improved the simulation of stream discharge and more closely balanced the watershed water budget. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Despite the strong interaction between surface and subsurface waters, groundwater flow representation is often oversimplified in hydrological models. For instance, the interplay between local or shallow aquifers and deeper regional‐scale aquifers is typically neglected. In this work, a novel hillslope‐based catchment model for the simulation of combined shallow and deep groundwater flow is presented. The model consists of the hillslope‐storage Boussinesq (hsB) model representing shallow groundwater flow and an analytic element (AE) model representing deep regional groundwater flow. The component models are iteratively coupled via a leakage term based on Darcy's law, representing delayed recharge to the regional aquifer through a low conductivity layer. Simulations on synthetic single hillslopes and on a two‐hillslope open‐book catchment are presented, and the results are compared against a benchmark three‐dimensional Richards equation model. The impact of hydraulic conductivity, hillslope plan geometry (uniform, convergent, divergent), and hillslope inclination (0.2%, 5%, and 30%) under drainage and recharge conditions are examined. On the single hillslopes, good matches for heads, hydrographs, and exchange fluxes are generally obtained, with the most significant differences in outflows and heads observed for the 30% slope and for hillslopes with convergent geometry. On the open‐book catchment, cumulative outflows are overestimated by 1–4%. Heads in the confined and unconfined aquifers are adequately reproduced throughout the catchment, whereas exchange fluxes are found to be very sensitive to the hillslope drainable porosity. The new model is highly efficient computationally compared to the benchmark model. The coupled hsB/AE model represents an alternative to commonly used groundwater flow representations in hydrological models, of particular appeal when surface–subsurface exchanges, local aquifer–regional aquifer interactions, and low flows play a key role in a watershed's dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A further development of a topography-based model of catchment hydrology (TOPMODEL) is described and applied to the problem of predicting flood frequency characteristics. The model can simulate infiltration excess, saturation excess, and subsurface runoff contributions to peak flows. Catchment geomorphology plays a central role in predicting the nature of the hydrological response. Using stochastic rainfall and initial condition inputs based on measured data, the model satisfactorily reproduces the mean hourly flow flood frequency growth curve for the Wye catchment, but not the mean number of peaks greater than 3mm h?1 each year. Suggestions for further improvements are made.  相似文献   

16.
Hydrological budgets and flow pathways have been quantified for a small upland catchment (1.76 km2) in the northeast of Scotland. Water balance calculations for four subcatchments identified spatial variability within the catchment, with an estimated runoff enhancement of up to 25% for the upper western area, compared with the rest of the catchment. Data from spatial hydrochemical sampling, over a range of flow conditions, were used to identify the principal hillslope runoff mechanisms within the catchment. A hydrochemical mixing analysis revealed that runoff emerging from springs in various locations of the hillslope accounted for a significant proportion of flow in the streams, even during storm events. A hydrological model of the catchment was calibrated using the calculated stream flows for four locations, together with results from the mixing analysis for different time points. The calibrated model was used to predict the temporal variability in contributions to stream flow from the hillslope springs and soil water flows. The overall split ranged from 57%:43% spring water:soil water in the upper eastern subcatchment, to 76%:24% in the upper western subcatchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
An integrated programme of hydrological monitoring at the 10 km2 Allt a' Mharcaidh catchment in north-east Scotland has been based on observations at plot, hillslope and catchment scale. The resonse of the principal soil types has been characterized from a combination of throughflow and three-dimensional tensiometer data at plot scale, and plot sequences have been used to investigate hillslope scale effects. Seep emergence is associated with downslope drainage and local topographic convergence; in parallel preferential pathways generate a highly dynamic throughflow response. Catchment and subcatchment hydrographs mirror the twin dynamic observed at hillslope scale, and a unified hypothesis of response is presented which is consistent with all scales of observations.  相似文献   

19.
ABSTRACT

India has been the subject of many recent groundwater studies due to the rapid depletion of groundwater in large parts of the country. However, few if any of these studies have examined groundwater storage conditions in all of India’s river basins individually. Herein we assess groundwater storage changes in all 22 of India’s major river basins using in situ data from 3420 observation locations for the period 2003–2014. One-month and 12-month standardized precipitation index measures (SPI-1 and SPI-12) indicate fluctuations in the long-term pattern. The Ganges and Brahmaputra basins experienced long-term decreasing trends in precipitation in both 1961–2014 and the study period, 2003–2014. Indeterminate or increasing precipitation trends occurred in other basins. Satellite-based and in situ groundwater storage time series exhibited similar patterns, with increases in most of the basins. However, diminishing groundwater storage (at rates of >0.4 km3/year) was revealed in the Ganges-Brahmaputra River Basin based on in situ observations, which is particularly important due to its agricultural productivity.  相似文献   

20.
TOPMODEL was calibrated to a small catchment using precipitation and runoff data. Acceptable fits of simulated and observed runoff were obtained during both the calibration and validation periods. Predictions of groundwater levels using this calibration did not agree well with observations at the 37 points within the catchment where groundwater levels were measured, including three locations with continuous recordings. Groundwater level observations at one single point in time, however, sufficed to calibrate new topographic–soil indices that improved the prediction of the local groundwater levels at the observed tubes. This suggests that spatially distributed calibration data are necessary to exploit reliably TOPMODEL's ability to predict spatially distributed hydrology. The mean or recalibrated transmissivity values at these 37 points differed from the catchment mean as determined by the precipitation–runoff calibration. Thus, while groundwater information can help in predicting groundwater levels at specific locations, increasing the number of local groundwater level measurements is not sufficient to improve the spatially distributed representation of subsurface flow by TOPMODEL for the catchment as a whole, as long as the groundwater information is not integrated in the precipitation–runoff calibration. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号