首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the results of an investigation into flood simulation by areal rainfall estimated from the combination of gauged and radar rainfalls and a rainfall–runoff model on the Anseong‐cheon basin in the southern part of Korea. The spatial and temporal characteristics and behaviour of rainfall are analysed using various approaches combining radar and rain gauges: (1) using kriging of the rain gauge alone; (2) using radar data alone; (3) using mean field bias (MFB) of both radar and rain gauges; and (4) using conditional merging technique (CM) of both radar and rain gauges. To evaluate these methods, statistics and hyetograph for rain gauges and radar rainfalls were compared using hourly radar rainfall data from the Imjin‐river, Gangwha, rainfall radar site, Korea. Then, in order to evaluate the performance of flood estimates using different rainfall estimation methods, rainfall–runoff simulation was conducted using the physics‐based distributed hydrologic model, Vflo?. The flood runoff hydrograph was used to compare the calculated hydrographs with the observed one. Results show that the rainfall field estimated by CM methods improved flood estimates, because it optimally combines rainfall fields representing actual spatial and temporal characteristics of rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Cecilia Svensson 《水文研究》1999,13(8):1197-1215
The upper reaches of the Huai River in Central China are located in the East Asian monsoon region. Strong seasonality, as well as large interannual variability of rainfall, causes floods and an uneven supply of water. In order to conserve the water and mitigate the floods, dams and flood protection structures are constructed. Their design requires information about the rainfall. Daily observations from 1957 to 1986 from 78 rain gauges were used to study shape, orientation, movement and geographical and seasonal occurrence of storms in the 79 000 km2 study area. The rainfall characteristics were described using graphical plots, cross‐ and autocorrelation. Storms larger than 50 mm/day were found to occur from February to November, whereas storms exceeding 350 mm/day were confined to the main rainfall season from late June to mid‐August. The southern part of the study area experienced a break in the rainfall season in late July, corresponding to the seasonal northward shift of the rain belt. A weekly periodicity of 7–8 days for rainfall was found during June–July, but not during August–September. During the whole period June–September, the spatial pattern of daily rainfall revealed an elongated shape, more pronounced during June–July than August–September. The rainfall area was orientated approximately from WSW to ENE during the whole period, and showed an anticlockwise rotation of about 16° per day during June–July. The cross‐correlation analysis revealed that the rainfall area moved about 100 km/day eastward. These results and an investigation of meteorological maps indicate that the spatial correlation pattern of daily rainfall is produced by cold fronts on the Mei‐Yu front. Suggestions are made as to how to use the results for the construction of design rainfalls in the study area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Limited availability of surface‐based rainfall observations constrains the evaluation of satellite rainfall products over many regions. Observations are also often not available at time scales to allow evaluation of satellite products at their finest resolutions. In the present study, we utilized a 3‐month rainfall data set from an experimental network of eight automatic gauges in Gilgel Abbay watershed in Ethiopia to evaluate the 1‐hourly, 8 × 8‐km Climate Prediction Center morphing technique (CMORPH) rainfall product. The watershed is situated in the Lake Tana basin which is the source of the Blue Nile River. We applied a suite of statistical metrics that included mean difference, bias, standard deviation of differences and measures of association. Our results indicate that the accuracy of the CMORPH product shows a significant variation across the basin area. Its estimates are mostly within ±10 mm h?1 of the gauge rainfall observations; however, the product does not satisfactorily capture the rainfall temporal variability and is poorly correlated (<0.27) to gauge observations. Its poor rain detection capability led to significant underestimation of the seasonal rainfall depth (total bias reaches up to ?52%) with large amounts of hit rain bias as well as missed rain and false rain biases. In the future refinement of CMORPH algorithm, more attention should be given to reducing missed rain bias over the mountains of Gilgel Abbay, whereas equal attention should be given to hit, missed rain and false rain biases over other parts of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Maximum rainfall intensity–duration–frequency (IDF) curves are commonly applied to determine the design rainfall in water resource projects. Normally, the IDF relationship is derived from recording rain gauges. As the network of non-recording rain gauges (daily rainfall) in Taiwan has a higher density than recording rain gauges, attempts were made in this study to extend the IDF relationship to non-recording rain gauges. Eighteen recording rain gauges and 99 non-recording rain gauges over the Chi-Nan area in Southern Taiwan provide the data sets. The regional IDF formulae were generated for ungauged areas to estimate rainfall intensity for various return periods and rainfall durations larger than or equal to one hour. For rainfall durations less than one hour, a set of adjustment formulae were applied to modify the regional IDF formulae. The method proposed in this study had reasonable application to non-recording rain gauges, which was concluded from the verification of four additional recording rain gauges. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Recently developed rainfall network design techniques are discussed and compared. Present day hydrological studies require high levels of accuracy from collected data. Also, scientists need to know the degree of accuracy of the information they use. The existing rainfall network in the Kizilirmak basin must be redesigned in order to meet the required level of accuracy preset by rainfall data users. The three following techniques were applied: optimum interpolation procedure which is a flexible method; variance of mean areal rainfall; and the analysis of variance. The existing network of 52 gauges is redesigned so that the network will have an average root mean square error (rmse) of ? 32 mm and the percentage of the area with rmse > 36 mm is limited to 10%. It is found that the proposed criteria are satisfied by a network of 53 gauges of which eight were newly established and seven of the existing ones removed.  相似文献   

6.
Missing data in daily rainfall records are very common in water engineering practice. However, they must be replaced by proper estimates to be reliably used in hydrologic models. Presented herein is an effort to develop a new spatial daily rainfall model that is specifically intended to fill in gaps in a daily rainfall dataset. The proposed model is different from a convectional daily rainfall generation scheme in that it takes advantage of concurrent measurements at the nearby sites to increase the accuracy of estimation. The model is based on a two-step approach to handle the occurrence and the amount of daily rainfalls separately. This study tested four neural network classifiers for a rainfall occurrence processor, and two regression techniques for a rainfall amount processor. The test results revealed that a probabilistic neural network approach is preferred for determining the occurrence of daily rainfalls, and a stepwise regression with a log-transformation is recommended for estimating daily rainfall amounts.  相似文献   

7.
The final stage in processing radar data so as to arrive at an estimated rain field typically involves a comparison of the preliminary radar-derived estimates of hourly rainfall with those observed by ground-based gauges. Often a mean field bias adjustment will then be applied using an age-weighted average of the individual gauge–radar comparisons. In this paper, a mean field bias adjustment is presented that uses the path-integrated rainfall estimates provided by microwave links together with information from gauges. It is shown to be at least as efficient as the current gauge-based procedure used by the UK Met Office to improve the accuracy of radar-based estimates of rainfall at the ground.  相似文献   

8.
This paper provides a comparison of gauge and radar precipitation data sources during an extreme hydrological event. November–December 2006 was selected as a time period of intense rainfall and large river flows for the Severn Uplands, an upland catchment in the United Kingdom. A comparison between gauge and radar precipitation time‐series records for the event indicated discrepancies between data sources, particularly in areas of higher elevation. The HEC‐HMS rainfall‐runoff model was selected to assess the accuracy of the precipitation to simulate river flows for the extreme event. Gauge, radar and gauge‐corrected radar rainfall were used as model inputs. Universal cokriging was used to geostatistically interpolate gauge data with radar and elevation data as covariates. This interpolated layer was used to calculate the mean‐field bias and correct the radar composites. Results indicated that gauge‐ and gauge‐corrected radar‐driven models replicated flows adequately for the extreme event. Gauge‐corrected flow predictions produced an increase in flow prediction accuracy when compared with the raw radar, yet predictions were comparative in accuracy to those using the interpolated gauge network. Subsequent investigations suggested this was due to an adequate spatial and temporal resolution of the precipitation gauge network within the Severn Uplands. Results suggested that the six rain gauges could adequately represent precipitation variability of the Severn Uplands to predict flows at an approximately equal accuracy to that obtained by radar. Temporally, radar produced an increase in flow prediction accuracy in mountainous reaches once the gauge time step was in excessive of an hourly interval. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall is a phenomenon difficult to model and predict, for the strong spatial and temporal heterogeneity and the presence of many zero values. We deal with hourly rainfall data provided by rain gauges, sparsely distributed on the ground, and radar data available on a fine grid of pixels. Radar data overcome the problem of sparseness of the rain gauge network, but are not reliable for the assessment of rain amounts. In this work we investigate how to calibrate radar measurements via rain gauge data and make spatial predictions for hourly rainfall, by means of Monte Carlo Markov Chain algorithms in a Bayesian hierarchical framework. We use zero-inflated distributions for taking zero-measurements into account. Several models are compared both in terms of data fitting and predictive performances on a set of validation sites. Finally, rainfall fields are reconstructed and standard error estimates at each prediction site are shown via easy-to-read spatial maps.  相似文献   

10.
Redistribution of ground‐level rainfall and interception loss by an isolated Quercus ilex tree were measured over 2 years in a Mediterranean oak savannah. Stemflow, meteorological variables and sap flow were also monitored. Rainfall at ground level was measured by a set of rain‐gauges located in a radial layout centred on the tree trunk and extending beyond the crown limits. Interception loss was computed as the difference between the volume of rainwater that would reach the ground in the absence of the tree and the volume of water that actually fell on the ground sampling area (stemflow included). This procedure provided correct interception loss estimates, irrespective of rainfall inclination. Results have shown a clear non‐random spatial distribution of ground‐level rainfall, with rainwater concentrations upwind beneath the crown and rain‐shadows downwind. Interception loss amounted to 22% of gross rainfall, per unit of crown‐projected area. Stand interception loss, per unit of ground area, was only 8% of gross rainfall and 28% of tree evapotranspiration. These values reflect the low crown cover fraction of the stand (0·39) and the specific features of the Mediterranean rainfall regime (predominantly with few large storms). Nevertheless, it still is an important component of the water balance of these Mediterranean ecosystems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Lars Bengtsson 《水文研究》2016,30(18):3172-3183
Observations of sea level and precipitation in Malmö, Sweden in the southeastern part of the sound Öresund have been used to estimate the probabilities of local compound events of high sea level and large daily and hourly rains. There are observations of sea level and daily rains extending back to 1930. The observations of short‐term rainfall are from 1980 and onwards. Most large rainfalls come in the summer, while the highest sea levels are in the autumn and in the winter. The highest observed sea level is about 130 cm above mean sea level, and the largest daily rain is close to 100 mm. However, the highest sea level observed during a day with rainfall corresponding to the 1‐year rain is less than 60 cm. The highest sea level observed during an hour with 1‐year hourly rainfall is 30 cm. From the statistics of daily rains, hourly rains and sea level, extreme values for each of them have been computed. For events with frequency higher than one per four years the probabilities of combined events sea level – rainfall are determined directly from the observations. For more rare events, marginal distributions of sea level and rainfall are determined. Copulas and conditional probabilities are used. When the sea level exceeds 20 cm above mean sea level, daily rains exceeding 10 mm are almost independent of the sea level and so are hourly rains exceeding 5 mm. It is extremely rare that large rains occur when the sea level is very high. The combination of 1‐year rainfall and the 1‐year sea level has a return period of more than 200 years.  相似文献   

12.
Observation of a storm approaching from the ocean to the in-land area is very important for the flood forecasting. Radar is generally used for this purpose. However, as rain gauges are mostly located within the in-land area, detection of the mean-field bias of radar rain rate cannot be easily made. This problem is obviously different from that with evenly-spaced rain gauges over the radar umbrella. This study investigated the detection problem of mean-field bias of radar rain rate when rain gauges are available within a small portion of radar umbrella. To exactly determine the mean-field bias, i.e. the difference between the radar rain rate and the rain gauge rain rate, the variance of the difference between two observations must be small; thus, a sufficient number of observations are indispensable. Therefore, the problem becomes determining the number of rain gauges that will satisfy the given accuracy, that being the variance of the difference between two observations. The dimensionless error variance derived by dividing the expected value of the error variance by the variance of the areal average rain rate was introduced as a criteria to effectively detect the mean field bias. Here, the variance of the areal average rain rate was assumed to be the climatological one and the expectation for the error variance could be changed depending one the sampling characteristics. As an example, this study evaluated the rainfall observation over the East Sea by the Donghae radar. About 6.8 % of the entire radar umbrella covered in-land areas, where the rain gauges were available. It was found that, to limit the dimensionless error variance to 2 %, a total of 26 rain gauges are required for the entire radar umbrella; whereas, a total of 24 rain gauges would be required within the in-land area with available for the rain gauge data.  相似文献   

13.
14.
Rainfall network design using kriging and entropy   总被引:4,自引:0,他引:4  
The spatial distribution of rainfall is related to meteorological and topographical factors. An understanding of the weather and topography is required to select the locations of the rain gauge stations in the catchment to obtain the optimum information. In theory, a well‐designed rainfall network can accurately represent and provide the needed information of rainfall in the catchment. However, the available rainfall data are rarely adequate in the mountainous area of Taiwan. In order to provide enough rainfall data to assure the success of water projects, the rainfall network based on the existing rain gauge stations has to be redesigned. A method composed of kriging and entropy that can determine the optimum number and spatial distribution of rain gauge stations in catchments is proposed. Kriging as an interpolator, which performs linear averaging to reconstruct the rainfall over the catchment on the basis of the observed rainfall, is used to compute the spatial variations of rainfall. Thus, the rainfall data at the locations of the candidate rain gauge stations can be reconstructed. The information entropy reveals the rainfall information of the each rain gauge station in the catchment. By calculating the joint entropy and the transmitted information, the candidate rain gauge stations are prioritized. In addition, the saturation of rainfall information can be used to add or remove the rain gauge stations. Thus, the optimum spatial distribution and the minimum number of rain gauge stations in the network can be determined. The catchment of the Shimen Reservoir in Taiwan is used to illustrate the method. The result shows that only seven rain gauge stations are needed to provide the necessary information. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
J. Ndiritu 《水文科学杂志》2013,58(8):1704-1717
Abstract

Raingauge measurements are commonly used to estimate daily areal rainfall for catchment modelling. The variation of rainfall between the gauges is usually inadequately captured and areal rainfall estimates are therefore very uncertain. A method of quantifying these uncertainties and incorporating them into ensembles of areal rainfall is demonstrated and tested. The uncertainties are imposed as perturbations based on the differences in areal rainfall that result when half of the raingauges are alternately omitted. Also included is a method of: (a) estimating the proportion rainfall that falls on areas where no gauges are located that are consequently computed as having zero rain, and (b) replacing them with plausible non-zero rainfalls. The model is tested using daily rainfall from two South African catchments and is found to exhibit the expected behaviour. One of the two parameters of the model is obtained from the rainfall data, while the other has direct physical interpretation.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Ndiritu, J., 2013. Using data-derived perturbations to incorporate uncertainty in generating stochastic areal rainfall from point rainfall. Hydrological Sciences Journal, 58 (8), 1704–1717.  相似文献   

16.
17.
Nozzle‐type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot‐wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 runs at different rain intensities and durations, and with different rain gauge layouts, showed that a simple average of measured rain would overestimate the plot‐wide rain by about 20 per cent. Using the adjustment factor to convert measured rainfall for individual gauges before averaging improved the estimate of plot‐wide rainfall considerably. For the 15 runs considered, overall discrepancy between actual and measured rain is reduced to less than 1 per cent with a standard error of 0·97 mm. This model can be easily tested in the ?eld by comparing rainfall depths of different sized gauges. With the adjustment factor they should all give very similar values. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well‐designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well as optimally relocating of existing redundant stations using the kriging‐based geostatistical approach was undertaken in this study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together is equally applicable to any other catchment. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

19.
In this paper the results of a field investigation on rilling carried out in the experimental Sparacia area are reported. The measurements were made on a plot 6 m wide and 22 m long subjected to natural rainfalls. For ten rainfalls the total soil loss (interrill and rill erosion) was collected in a storage system consisting of two tanks arranged in series at the base of the plot. Rill morphology (rill length and cross‐sections) was measured for five rainfall events, while the rill profile was surveyed for three events. First the contribution of each component (rill and interrill erosion) to total soil loss was established. Then the analysis allowed establishment of a power relationship between the rill length and the rill volume. Finally, for three events detailed information on rill erosion and rill morphology allowed verification of the applicability of WEPP and estimation of the rill erodibility constant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In the quantitative evaluation of radar-rainfall products (maps), rain gauge data are generally used as a good approximation of the true ground rainfall. However, rain gauges provide accurate measurements for a specific location, while radar estimates represent areal averages. Because these sampling discrepancies could introduce noise into the comparisons between these two sensors, they need to be accounted for. In this study, the spatial sampling error is defined as the ratio between the measurements by a single rain gauge and the true areal rainfall, defined as the value obtained by averaging the measurements by an adequate number of gauges within a pixel. Using a non-parametric scheme, the authors characterize its full statistical distribution for several spatial (4, 16 and 36 km2) and temporal (15 min and hourly) scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号