首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
《Journal of Hydrology》1999,214(1-4):165-178
Karst aquifers are capable of transporting and discharging large quantities of suspended sediment, which can have an important impact on water quality. Here we present the results of intensive monitoring of sediment discharging from a karst spring in response to two storm events, one following a wet season and the other following a dry season; we describe temporal changes in total suspended solids (TSS), mineralogy, and particle size distribution. Peak concentrations of suspended sediment coincided with changes in aqueous chemistry indicating arrival of surface water, suggesting that much of the discharging sediment had an allochthonous origin. Concentrations of suspended sediment peaked 14–16 h after rainfall, and the bulk of the sediment (approximately 1 metric ton in response to each storm) discharged within 24 h after rainfall. Filtered material included brightly colored fibers and organic matter. Suspended sediments consisted of dolomite, calcite, quartz, and clay. Proportions of each mineral constituent changed as the aquifer response to the storm progressed, indicating varying input from different sediment sources. The hydraulic response of the aquifer to precipitation was well described by changes in parameters obtained from the particle size distribution function, and corresponded to changes seen in TSS and mineralogy. Differences between storms in the quantity and mineralogy of sediment transported suggest that seasonal effects on surface sediment supply may be important. The quantity of sediment discharging and its potential to sorb and transport contaminants indicates that a mobile solid phase should be included in contaminant monitoring and contaminant transport models of karst. Temporal changes in sediment quantity and characteristics and differences between responses to the two storms, however, demonstrate that the process is not easily generalized.  相似文献   

3.
1 INTRODUCTION The particle size of sediment eroded from basins can provide basic information about erosion processes (Meyer et al., 1980), which can be divided into sheet wash sediment processes on hill slopes and fluvial sediment processes in rivers. In…  相似文献   

4.
Surface flow and suspended sediment discharge from the head hollow of the Jozankei Experimental Watershed in Hokkaido, northern Japan, were measured to clarify the implications of subsurface hydrology for soil movement. Subsurface discharges during the extremely large storms of 1993 to 1994 were measured in a V-notch weir installed at a natural spring near the bottom of the head hollow, and shallow groundwater levels were observed in the wells excavated in the hollow. Sediment samples whose particle size range from 0·001 to 0·1 mm were manually and automatically collected at 15 to 60 min intervals, by use of 1 or 21 polyethylene bottles. Maximum concentration and flux of suspended sediment during the storms preceded the peak discharge of subsurface flow by several hours. Neither the changes in concentration (mg l−1) nor flux (mg s−1) of suspended sediment coincided with those in subsurface discharge (l s−1). Furthermore, sediment concentration was poorly correlated with the rate of change in subsurface discharge (l s−2) during the rising limb of the hydrograph. Suspended sediment flux during the acceleratory limb, however, was closely correlated with the rate of change in subsurface discharge. The relationship between suspended sediment flux and rate of change in subsurface discharge were in inverse proportion to initial subsurface discharge before the storm runoff and they represented rare seasonal variation. Subsurface hydraulic erosion and transport of suspended sediment resulting from changes in rate of change in subsurface discharge actively occur during the acceleratory rising limb of the hydrograph. Accordingly, subsurface hydraulic erosion during the acceleratory rising limb of the hydrograph can be physically understood by analysing suspended sediment flux associated with rate of change in subsurface discharge and initial subsurface discharge. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Suspended sediment dynamics influenced by rainstorms and factors controlling changes in suspended sediment concentrations, were investigated during hydrological events in a small scale, since small agricultural drainage basins can be considered as one of the most important sediment sources. Suspended sediment concentrations were measured during discharge waves in the years 1987–1990, 1992, 2000 and 2001. Positive and anti-clockwise hysteresis was observed at Rybárik basin. A procedure of isolating factors controlling suspended sediment concentrations and dynamics has given a more realistic view on production and transport of suspended sediment. It is confirmed that spatial and temporal variability of sediment availability and suspended sediment dilution by the baseflow, mainly in the case of two or more waves immediately following one after another, significantly control suspended sediment concentrations and dynamics.  相似文献   

9.
This study focuses on the coupled transport of dissolved constituents and particulates, from their infiltration on a karst plateau to their discharge from a karst spring and their arrival at a well in an alluvial plain. Particulate markers were identified and the transport of solids was characterised in situ in porous and karstic media, based on particle size analyses, SEM, and traces. Transport from the sinkhole to the spring appeared to be dominated by flow through karst: particulate transport was apparently conservative between the two sites, and there was little difference in the overall character of the particle size distribution of the particulates infiltrating the sinkhole and of those discharging from the spring. Qualitatively, the mineralogy of the infiltrating and discharging material was similar, although at the spring an autochthonous contribution from the aquifer was noted (chalk particles eroded from the parent rock by weathering). In contrast, transport between the spring and the well appears to be affected by the overlying alluvium: particles in the water from the well, showed evidence of considerable size-sorting. Additionally, SEM images of the well samples showed the presence of particles originating from the overlying alluvial system; these particles were not found in samples from the sinkhole or the spring. The differences between the particulates discharging from the spring and the well indicate that the water pumped from the alluvial plain is coming from the karst aquifer via the very transmissive, complex geologic interface between the underlying chalk formation and the gravel at the base of the overlying alluvial system.  相似文献   

10.
Deposition and storage of fine‐grained (<62·5 μm) sediment in the hyporheic zone of gravel bed rivers frequently represents an important cause of aquatic habitat degradation. The particle size characteristics of such fine‐grained bed sediment (FGBS) exert an important control on its hydrodynamic properties and environmental impact. Traditionally, particle size analysis of FGBS in gravel bed rivers has focused on the absolute size distribution of the chemically dispersed mineral fraction. However, recent work has indicated that in common with fluvial suspended sediment, significant differences may exist between the absolute and the in situ, or effective, particle size composition of FGBS, as a result of the existence of aggregates, or composite particles. In the investigation reported in this paper, sealable bed traps that could be remotely opened to sample sediment deposited during specific storm runoff events and a laser back‐scatter probe were used to quantify the temporal and spatial variability of both the absolute and effective particle size composition of FGBS, and the associated suspended sediment from four gravel bed rivers in the Exe Basin, Devon, UK. The absolute particle size distributions of both the FGBS and suspended sediment evidenced c. >95%<62·5 μm sized primary particles and displayed a seasonal winter–summer fining, while the opposite trend was displayed by the effective particle size distribution of the FGBS and suspended sediment. The effective particle size distributions of both were typically highly aggregated, comprising up to 68%>62·5 μm sized particles. Spatial variation in the effective particle size and aggregation parameters was of secondary importance relative to temporal variation. The effective particle size distribution of the FGBS was consistently coarser and more aggregated than the associated suspended sediment and there was evidence of aggregate break‐up in samples of resuspended bed sediment. The implications of these findings for sediment transport modelling are considered. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.  相似文献   

12.
Suspended sediment concentrations (SSCs) in rivers are variable in time due to interacting soil erosion and sediment transport processes. While many hydro-meteorological variables are correlated to SSCs, interpretation of these correlations in terms of driving processes requires in-depth knowledge of the catchment. Detailed sediment source information is needed to establish the causal linkages between driving processes and variations in SSC. This study innovatively combined sediment fingerprinting with multivariate statistical analyses of hydro-meteorological data to investigate how differential contributions of sediment sources control SSC in response to hydro-meteorological variables during high-flow events in rivers. Applied to the River Aire (UK), five sediment sources were classified: grassland topsoil in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks, and street dust. A total of 159 suspended sediment samples were collected during 14 high-flow events (2015–2017). Results show substantial variation in sediment sources during high-flow events. Limestone grassland and street dust, the dominant contributors to the suspended sediment, show temporal variations consistent with variations in total SSC, and are correlated with precipitation and discharge shortly prior and during high-flow events (i.e. fast mobilization to and within river). Contrarily, contributions from millstone and coals grassland appear to be driven by antecedent hydro-meteorological conditions (i.e. lag-time between soil erosion and sediment delivery). Riverbank material is poorly correlated to hydro-meteorological variables, possibly due to weak source discrimination or the infrequent nature of its delivery to the channel. Differences in source-specific drivers and process interactions for sediment transport demonstrate the difficulty in generalizing sediment transport patterns and developing targeted suspended sediment management strategies. While more research is essential to address different uncertainties emerging from the approach, the study demonstrates how empirical data on sediment monitoring, fingerprinting, and hydro-meteorology can be combined and analysed to better understand sediment connectivity and the factors controlling SSC. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The delivery of excessive fine sediment (particles<2 mm in diameter) to rivers can cause serious deleterious effects to aquatic ecosystems and is widely acknowledged to be one of the leading contributors to the degradation of rivers globally.Despite advances in using biological methods as a proxy,physical measures remain an important method through which fine sediment can be quantified.The aim of this study was to provide further insights into the environmental variables controlling sediment ...  相似文献   

15.
A study was carried out on a rural catchment located in northwest Spain to examine the sediment yield from the catchment by measuring suspended sediments during rainfall events. Within the catchment regular surveys were conducted to obtain data on the suspended sediment sources. Important variations in sediment load were detected at event scale (0·3–21·0 Mg); some of these can be explained in terms of event size, antecedent conditions, rainfall distribution and soil surface erosion. To study the variables controlling suspended sediment yield during the events in the catchment, several event and pre‐event variables were calculated for all events. The sediment load is strongly influenced by discharge variables. During the events discharge–suspended sediments were also analysed. When the soil surface was unprotected, the formation of rills and ephemeral gullies on agricultural land at the catchment head was an important source of suspended sediments in the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Environmental data sets are often multidimensional and consequently display complex structure. This article shows the limitations of principal component analysis (PCA) for the study of such three-dimensional (3D) data sets. These limitations can be resolved by the use of the statistical tool STATIS. The inlet (a swallow hole) and the outlet (a spring) of a karst system of the Western Paris basin were sampled during three rain events of various intensities. These 3D geochemical data sets (variables × sites × dates) for a karst system were analyzed by STATIS method to identify hydrological processes. STATIS proceeds in three steps (interstructure, compromise, and intrastructure), which allows us to focus the analysis of hydrologic systems at different temporal and spatial scales. Compromise plane shows that suspended matter and flood are not simultaneous and highlights a rapid flow, characterized by turbidity and phosphate, which represents a point source contamination, and a ground water flow contaminated by nitrate. Intrastructure plane allows us to compare hydrochemical variations between the swallow hole and the spring lead. By this way, hydrological processes such as direct transfer and resuspension of intrakarstic sediments before and after the flood were identified what cannot be realized by comparison of inlet and outlet breakthrough curves. Finally, results obtained from the same data set by STATIS and a coupled study using PCA and normalized hysteresis curves were compared. This comparison shows the efficiency of STATIS at the identification of transport processes and vulnerability of karst system and its potential for hydrological applications.  相似文献   

17.
This paper investigates suspended sediment transport and dynamics of two nested agricultural lowland Mediterranean catchments with a difference of two orders of magnitude in the surface area (i.e., 1 and 264 km2). The effects of the drainage catchment area over the specific suspended sediment yield are assessed by using the nested approach over various timeframes. A detailed analysis of the rainfall–runoff–sediment transport relationships during the 2‐year study period shows that the hydrological and sedimentological responses were extremely variable for both catchments. Very low or no correlations were observed between the rainfall intensity and the selected hydrological variables and sediment loads. However, remarkable or high correlations were obtained between the rainfall intensity and the maximum and average suspended sediment concentrations, indicating that rainfall per unit time has little control on the hydrological response, but that, simultaneously, its high‐erosive power triggers sediment production, increasing the sedimentary response of the catchments. This study also illustrates how sediment is mainly transported during floods, producing predominantly clockwise hysteretic loops. Moreover, the small headwater catchment exerts a reduced (or even negligible) effect over the hydro‐sedimentary response of the larger downstream catchment, caused by the reduced sediment availability in a landscape with an inherent disconnection of the sediment pathways.  相似文献   

18.
The hydrologic regime of the Tiber River basin in central Italy has been impacted considerably in the last decades by intensive anthropic activities, and hydraulic works in particular (e.g. hydropower reservoirs, land use modification). In the Tiber River the wash load, in particular, plays an important role in sediment transport, and the knowledge of this hydrological variable is very important for the evaluation of medium-long-term dynamic of shoreline, and the evaluation of reservoir landfill. The Ripetta flow gauge, located in downtown Rome, has been continuously monitoring the daily discharge for decades, while daily sediment load measurements are available only for short terms.In this research, the yearly sediment rate is simulated using a simple stochastic model based on the evaluation of sediment rating curves. The sediment rating curve, i.e. the average relation between discharge and suspended sediment concentration for a specific location, is estimated using a power law model. The fitting curve, obtained by regression analysis, lacks the physical characterization of the phenomenon, often represented by the empirical evidences of erosion severity and the erosional power of river. Model results provide useful insights on the impact of recent hydraulic works on the sediment transport regime.  相似文献   

19.
This paper contributes a field study of suspended sediment transport through aquatic vegetation. The study was run over a 3 month period which was selected to coincide with scheduled weed cutting activities. This provided the opportunity to obtain data points with no vegetation cover, as well as to investigate the effects of weed cutting on Suspended Sediment Concentrations (SSC), particle size distributions and river hydraulics. Aquatic vegetation cover was quantified through remote sensing with Unmanned Aerial Vehicles and biomass estimated from ground truth sampling. SSC was highly dependent on aquatic vegetation abundance, and the distance upstream that had been cleared of aquatic vegetation. The data indicates that fine sediment was being trapped and stored by aquatic vegetation, then likely remobilised after vegetation removal. Investigation of suspended sediment spatial dynamics illustrated changes in particle size distribution due to preferential settling of coarse particles within aquatic vegetation, for example D50 decreased from 36.08 μm to 15.64 μm after suspended sediment travelled 304.2 m downstream and passed ~3700 kg of aquatic vegetation biomass. Hydraulic resistance in the study reach (parameterized by Manning's n) dropped by over 70% following vegetation cutting. Prior to cutting hydraulic resistance was discharge dependent (likely due to vegetation pronating at higher flows), while post cutting hydraulic resistance was approximately invariant of discharge. Aerial surveying captured interesting changes in aquatic vegetation cover prior to vegetation cutting, where some very dense regions of aquatic vegetation were naturally removed (without any high flow events) leaving behind unvegetated riverbed and fine sediment. The weed cutting boat had a lower impact on SSC than was originally expected, which indicates that it may offer a less damaging solution to aquatic vegetation removal in rivers than some other approaches such as mechanical excavation. This paper contributes valuable field data (which are generally scarce) on the research topic of flow-vegetation-sediment interactions, to supplement laboratory and numerical studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号