首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Despite the strong interaction between surface and subsurface waters, groundwater flow representation is often oversimplified in hydrological models. For instance, the interplay between local or shallow aquifers and deeper regional‐scale aquifers is typically neglected. In this work, a novel hillslope‐based catchment model for the simulation of combined shallow and deep groundwater flow is presented. The model consists of the hillslope‐storage Boussinesq (hsB) model representing shallow groundwater flow and an analytic element (AE) model representing deep regional groundwater flow. The component models are iteratively coupled via a leakage term based on Darcy's law, representing delayed recharge to the regional aquifer through a low conductivity layer. Simulations on synthetic single hillslopes and on a two‐hillslope open‐book catchment are presented, and the results are compared against a benchmark three‐dimensional Richards equation model. The impact of hydraulic conductivity, hillslope plan geometry (uniform, convergent, divergent), and hillslope inclination (0.2%, 5%, and 30%) under drainage and recharge conditions are examined. On the single hillslopes, good matches for heads, hydrographs, and exchange fluxes are generally obtained, with the most significant differences in outflows and heads observed for the 30% slope and for hillslopes with convergent geometry. On the open‐book catchment, cumulative outflows are overestimated by 1–4%. Heads in the confined and unconfined aquifers are adequately reproduced throughout the catchment, whereas exchange fluxes are found to be very sensitive to the hillslope drainable porosity. The new model is highly efficient computationally compared to the benchmark model. The coupled hsB/AE model represents an alternative to commonly used groundwater flow representations in hydrological models, of particular appeal when surface–subsurface exchanges, local aquifer–regional aquifer interactions, and low flows play a key role in a watershed's dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
《水文科学杂志》2013,58(3):618-628
Abstract

Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall—runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less “dry” than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, “wet” runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.  相似文献   

5.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

6.
7.
P. Rodgers  C. Soulsby  S. Waldron 《水文研究》2005,19(11):2291-2307
δ18O measurements of precipitation and stream waters were used as a natural tracer to investigate hydrological pathways and residence times in the River Feshie, a complex mesoscale (231 km2) catchment in the Cairngorm Mountains of Scotland. Precipitation δ18O exhibited strong seasonal variation over the 2001–02 hydrological year, ranging from −6·9‰ in the summer, to −12·0‰ during winter snowfalls (mean δ18O −9·59‰). Although damped, this seasonality was reflected in stream water outputs at seven sampling sites in the catchment, allowing δ18O variations to be used to infer hydrological source areas. Thus, stream water δ18O was generally controlled by a seasonally variable storm flow end member, mixing with groundwater of more constant isotopic composition. Periodic regression analysis allowed the differences in this mixing process between monitoring subcatchments to be assessed more quantitatively to provide a preliminary estimate of mean stream water residence time. This demonstrated the importance of responsive hydrological pathways associated with peat and shallow alpine soils in the headwater subcatchments in producing seasonally variable runoff with short mean residence times (33–113 days). In contrast, other tributaries with more freely draining soils and larger groundwater storage in shallow aquifers provided more effective mixing of variable precipitation inputs, resulting in longer residence time estimates (178–445 days). The mean residence time of runoff leaving the Feshie catchment reflected an integration of these contrasting influences (110–200 days). These insights from δ18O measurements extend the hydrological understanding of the Feshie catchment gained from other hydrochemical tracers, and demonstrate the utility of isotope tracers in investigating hydrological processes at the mesoscale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The hydrology of oxygen‐18 (18O) isotopes was monitored between 1995 and 1998 in the Allt a' Mharcaidh catchment in the Cairngorm Mountains, Scotland. Precipitation (mean δ18O=−7·69‰) exhibited strong seasonal variation in δ18O values over the study period, ranging from −2·47‰ in the summer to −20·93‰ in the winter months. As expected, such variation was substantially damped in stream waters, which had a mean and range of δ18O of −9·56‰ and −8·45 to −10·44‰, respectively. Despite this, oxygen‐18 proved a useful tracer and streamwater δ18O variations could be explained in terms of a two‐component mixing model, involving a seasonally variable δ18O signature in storm runoff, mixing with groundwater characterized by relatively stable δ18O levels. Variations in soil water δ18O implied the routing of depleted spring snowmelt and enriched summer rainfall into streamwaters, probably by near‐surface hydrological pathways in peaty soils. The relatively stable isotope composition of baseflows is consistent with effective mixing processes in shallow aquifers at the catchment scale. Examination of the seasonal variation in δ18O levels in various catchment waters provided a first approximation of mean residence times in the major hydrological stores. Preliminary estimates are 0·2–0·8 years for near‐surface soil water that contributes to storm runoff and 2 and >5 years for shallow and deeper groundwater, respectively. These 18O data sets provide further evidence that the influence of groundwater on the hydrology and hydrochemistry of upland catchments has been underestimated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
A deeper knowledge of the hydrological response of semi-arid Mediterranean watersheds would be useful in the prediction of runoff production for assessing flood risks and planning flood mitigation works. This study was conducted to identify the runoff generation mechanisms and their controlling factors at the hillslope scale in a Mediterranean semi-arid watershed. Four zero-order microcatchments were selected to measure rainfall and runoff for a three-year period. Two groups of soil were differentiated with respect to the hydrological response. The fine textured, poorly permeable soils of low organic carbon content had a greater runoff coefficient (9%) and lower runoff threshold (3·6 mm) than more permeable, coarser textured soils of medium organic carbon content (<3%, and 8 mm, respectively). The influence of rainfall characteristics on the hydrological response was different. Rain intensity was the major rainfall parameter controlling the runoff response in the microcatchments on fine textured, low infiltrability soils with a poor plant cover, while total rainfall was more closely correlated with runoff in coarser textured, highly permeable soils with a denser plant cover. It can be concluded that there are two runoff generation mechanisms: (i) an infiltration-excess overland flow in the more degraded areas with low organic carbon content (<0·5%) and low infiltrability (>5 mm h−1); and (ii) a saturation-excess overland flow in the less degraded areas with a high organic carbon content (>2%), high infiltrability (>8 mm h−1) and covered by a dense plant cover (>50%). © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Climate warming is having profound effects on the hydrological cycle by increasing atmospheric demand, changing water availability, and snow seasonality. Europe suffered three distinct heat waves in 2019, and 11 of the 12 hottest years ever recorded took place in the past two decades, which will potentially change seasonal streamflow patterns and long-term trends. Central Europe exhibited six dry years in a row since 2014. This study uses data from a well-documented headwater catchment in Central Europe (Lysina) to explore hydrological responses to a warming climate. We applied a lumped parameter hydrologic model Brook90 and a distributed model Penn State Integrated Hydrologic Model (PIHM) to simulate long-term hydrological change under future climate scenarios. Both models performed well on historic streamflow and in agreement with each other according to the catchment water budget. In addition, PIHM was able to simulate lateral groundwater redistribution within the catchment validated by the groundwater table dynamics. The long-term trends in runoff and low flow were captured by PIHM only. We applied different EURO-CORDEX models with two emission scenarios (Representative Concentration Pathways RCP 4.5, 8.5) and found significant impacts on runoff and evapotranspiration (ET) for the period of 2071–2100. Results from both models suggested reduced runoff and increased ET, while the monthly distribution of runoff was different. We used this catchment study to understand the importance of subsurface processes in projection of hydrologic response to a warming climate.  相似文献   

14.
The Brixenbach valley is a small Alpine torrent catchment (9.2 km2, 820–1950 m a.s.l., 47.45°, 12.26°) in Tyrol, Austria. Intensive hydrological research in the catchment since more than 12 years, including a hydrogeological survey, pedological and land use mapping, measurements of precipitation, runoff, soil moisture and infiltration as well as the conduction of rainfall simulations, has contributed to understand the hydrological response of the catchment, its subcatchments and specific sites. The paper presents a synthesis of the research in form of runoff process maps for different soil moisture states and precipitation characteristics, derived with the aid of a newly developed Soil-hydrological model. These maps clearly visualize the differing runoff reaction of different subcatchments. The pasture dominated areas produce high surface flow rates during short precipitation events (1 h, 86 mm) with high rainfall intensity, whilst the forested areas often develop shallow subsurface flow. Dry preconditions lead to a slight reduction of surface flow, long rainfall events (24 h, 170 mm) to a dominance of deep subsurface flow and percolation.  相似文献   

15.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The impact of global climate change on runoff components, especially on the type of overland flow, is of utmost significance. High‐resolution temporal rainfall plays an important role in determining the hydrological response of quick runoff components. However, hydrological climate change scenario analyses with high temporal resolution are rare. This study investigates the impact of climate change on discharge peak events generated by rainfall, snowmelt, and soil‐frost induced runoff using high‐resolution hydrological modelling. The study area is Schäfertal catchment (1.44 km2) in the lower Harz Mountains in central Germany. The WaSiM‐ETH hydrological model is used to investigate the rainfall response of runoff components under near future (2021–2050) and far‐distant future (2071–2100) climatic conditions. Disaggregated daily climate variables of WETTREG2010 SRES scenario A1B are used on a temporal resolution of 10 min. Hydrological model parameter optimization and uncertainty analysis was conducted using the Differential Evolution Adaptive Metropolis (DREAM_(ZS)) uncertainty tool. The scenario results show that total runoff and interflow will increase by 3.8% and 3.5% in the near future and decrease by 32.85% and 31% in the far‐distant future compared to the baseline scenario. In contrast, overland flow and the number and size of peak runoff will decrease moderately for the near future and drastically for the far‐distant future compared to the baseline scenario. We found the strongest decrease for soil‐frost induced discharge peaks at 79.6% in the near future and at 98.2% in the far‐distant future scenario. It can be concluded that high‐resolution hydrological modelling can provide detailed predictions of future hydrological regimes and discharge peak events of the catchment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Upgrading agriculture in semi-arid areas and ensuring its sustainability require an optimal management of rainfall partition between blue and green waters in the farmed water harvesting catchment. The main objective of this study is to analyze the influence of heterogeneous land use on the spatial and temporal variation of rainfall partitioning and blue water production within a typical farmed catchment located in north-eastern Tunisia. The catchment has an area of 2.6 km2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Overland flow and soil water balance components were monitored during two cropping seasons (2000/2001 and 2001/2002) on a network of eleven plots of 2 m2 each with different land use and soil characteristics. The hydrological balances of both the catchment and reservoir have been monitored since 1994.Observed data showed a very large temporal and spatial variability of overland flow within the catchment reflecting the great importance of total rainfall as well as land use. During the 2001/2002 season the results showed a large variation of the number of observed runoff events, from 27 to 39, and of the annual overland flow depths, from 8 mm (under vineyard on calcaric cambisols) up to 43 mm (under shrubs-pasture on haplic regosols), between the plots. The annual runoff amounts were moderate; they always corresponded to less than 15% of the annual rainfall amount whatever the observation scale. It was also observed that changes in land use in years with similar rainfall could lead to significant differences in blue water flow. An attempt for predicting the overland flow by the general linear regression approach showed an r2 of 31%, the predictors used are the class of soil infiltration capacity, the initial moisture saturation ratio of the soil surface layer and the total rainfall amounts.These experimental results indicate that the variation in land use in a semi-arid catchment is a main factor of variation in soil surface conditions and explain the major role played by the former on hydrological behavior of the upstream area and on rainfall partition between overland flow and infiltration. Therefore, to predict the water harvesting capacities in terms of blue water production of a farmed catchment in semi-arid areas it seems essential to consider precisely its land use and its temporal evolution related to management practices.  相似文献   

20.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号