首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paraglacial reworking of glacial sediments by rivers and mass wasting is an important conditioning factor for modern sediment yields in mountainous catchments in formerly glaciated regions. Catchment scale and patterns of sediment storage are important influences in the rate of postglacial adjustment. We develop a quantitative framework to estimate the volume, sediment type, and fractional size distribution of legacy glacial materials in a large (1230 km2) watershed in the North Cascade Mountains in south‐western British Columbia, Canada. Chilliwack Valley is exceptional because of the well‐dated bounds of deglaciation. Interpolation of paleo‐surfaces from partially eroded deposits in the valley allows us to estimate the total evacuated sediment volume. We present a chronology of sediment evacuation from the valley and deposition in the outlet fan, based on infrared stimulated luminescence (IRSL) and 14 C dating of river terraces and fan strata, respectively. The effects of paraglacial sedimentation in Chilliwack Valley were intensified through a major fall in valley base‐level following ice retreat. The steepened mainstem valley gradient led to deep incision of valley fills and fan deposits in the lower valley network. The results of this integrated study provide a postglacial chronology and detailed sediment budget, accounting for long‐term sorting of the original sediments, lag deposit formation in the mainstem, deposition in the outlet fan, and approximate downstream losses of suspended sediment and wash load. The mass balance indicates that a bulk volume of approximately 3.2 km3 of glacial material has been evacuated from the valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The Holocene volumetric sediment budget is estimated for coarse textured sediments (sand and gravel) in a large, formerly glaciated valley in southwest British Columbia. Erosion is estimated by compiling volumetric loss estimated in digital elevation models (DEMs) of gullied topography and by applying a non‐linear diffusion model on planar, undissected hillslopes. Estimates of steepland yield are based on estimates of post‐glacial deposition volumes in fans, cones and deltas at the outlets of low‐order tributary catchments. Erosion of post‐glacial fans and tributary valley fills is estimated by reconstructing formerly continuous surfaces. Results are classed by catchment order and compared across scales of contributing area, revealing declining specific sediment yield (in m3 km?2 a?1) with catchment area for the smaller tributaries (<10 km2) and increasing specific sediment yield for larger tributaries and Chilliwack Valley itself. Approximately 60% of mobilized sediment is redeposited in first‐ to third‐order catchments, with lesser proportions stored at the outlets of higher order catchments. A simple network routing model emphasizes the significant sediment flux contributions from colluvium, drift blankets and gullies in steeper terrain. As this material is deposited at junctions within the lower drainage network, an increasing proportion of material is derived from remnant valley fills and para‐glacial fans in the major valleys. Yield from lower‐order, steepland catchments tends to remain in storage, indefinitely sequestered on footslopes. These observations have implications for modelling the post‐glacial sediment balance amongst catchments of varying size. After 104 years, the system remains in disequilibrium. The critical linkage lies between low‐order, hillslope catchments (相似文献   

3.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The relationship between climate, landscape connectivity and sediment export from mountain ranges is key to understanding the propagation of erosion signals downstream into sedimentary basins. We explore the role of connectivity in modulating the composition of sediment exported from the Frontal Cordillera of the south-central Argentine Andes by comparing three adjacent and apparently similar semi-glaciated catchment-fan systems within the context of an along-strike precipitation gradient. We first identify that the bedrock exposed in the upper, previously glaciated reaches of the cordillera is under-represented in the lithological composition of gravels on each of three alluvial fans. There is little evidence for abrasion or preferential weathering of sediment sourced from the upper cordillera, suggesting that the observed bias can only be explained by sediment storage in these glacially widened and flattened valleys of the upper cordillera (as revealed by channel steepness mapping). A detailed analysis of the morphology of sedimentary deposits within the catchments reveals catchment-wide trends in either main valley incision or aggradation, linked to differences in hillslope–channel connectivity and precipitation. We observe that drier catchments have poor hillslope–channel connectivity and that gravels exported from dry catchments have a lithological composition depleted in clasts sourced from the upper cordillera. Conversely, the catchment with the highest maximum precipitation rate exhibits a high degree of connectivity between its sediment sources and the main river network, leading to the export of a greater proportion of upper cordillera gravel as well as a greater volume of sand. Finally, given a clear spatial correlation between the resistance of bedrock to erosion, mountain range elevation and its covariant, precipitation, we highlight how connectivity in these semi-glaciated landscapes can be preconditioned by the spatial distribution of bedrock lithology. These findings give insight into the extent to which sedimentary archives record source erosion patterns through time.  相似文献   

5.
The relative importance of tectonics, climate, base level and source lithology as primary factors on alluvial‐fan evolution, fan morphology and sedimentary style remain in question. This study examines the role of catchment lithology on development and evolution of alluvial megafans (>30 km in length), along the flanks of the Kohrud Mountain range, NE Esfahan, central Iran. These fans toe out at axial basin river and playa‐fringe sediments towards the centre of basin and tectonics, climatic change and base‐level fluctuations, were consistent for their development. They formed in a tectonically active basin, under arid to semiarid climate and a long term (Plio‐Pleistocene to Recent) change from wetter to drier conditions. The key differences between two of these fans, Soh and Zefreh fans, along the west and south flanks of this mountain range, is that their catchments are underlain by dissimilar bedrock types. The source‐area lithologies of the Soh and Zefreh fans are in sedimentary and igneous terrains, respectively, and these fans developed their geometry mainly in response to different weathering intensities of their catchment bedrock lithologies. Fan surface mapping (based on 1/50000 topographic maps, satellite images, and fieldwork), reveals that the geomorphic evolution of these fans differs in that the relatively large‐scale incision and through trenching of the Soh fan is absent in the Zefreh fan. Whereas the limited sediment supply of the Soh fan has resulted in a deep incised channel, the Zefreh fan has remained aggradational with little or no trenching into proximal to medial fan surface due to its catchment bedrock geology, composed mainly by physically weathered volcaniclastic lithology and characterized by high sediment supply for delivery during episodic flash floods. Sediment supply, which is mainly a function of climate and source lithology, is a dominant driver behind the development of fan sequences in alluvial megafans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Differences in lithologic erodibility and sediment storage within a drainage basin affect the relationship between alluvial fan area and drainage basin area along the western White Mountains. Large fans are produced by basins underlain by resistant rocks, which have steep and narrow trunk stream canyons with little sediment in storage. Small fans are produced by basins composed of erodible lithologic units, which have wider valley floors, lower valley-side slopes, and considerably more sediment stored along trunk stream canyons than is the case in basins underlain by resistant rocks.  相似文献   

7.
Alluvial fans and debris cones link two zones of the fluvial system (e.g. hillslope gully systems to stream channels; mountain catchment sediment source areas to main river systems or to sedimentary basins) and therefore have important coupling or buffering roles. These roles may be both functional and preservational. The functional role includes debris‐cone coupling, which controls sediment supply from hillslope gully systems to stream channels, influencing channel morphology. Coupling through larger alluvial fans, expressed by fanhead trenching, causes a distal shift in sedimentation zones, or when expressed by through‐fan trenching, causes complete sediment by‐pass. The preservational role stems from the fact that fans and cones are temporary sediment storage zones, and may preserve a record of source–area environmental change more sensitively than would sediments preserved further downsystem. Fan coupling mechanisms include distally‐induced coupling (basal scour, ‘toe cutting’, marginal incision) and proximally‐induced coupling (fanhead and midfan trenching). These mechanisms lead initially to partial coupling, either extending the immediate sediment source area to the stream system or shifting the focus of sedimentation distally. Complete coupling involves transmission of sediment from the feeder catchment through the fan environment into the downstream drainage or a sedimentary basin. The implications of coupling relate to downstream channel response, fan morphology, sedimentation patterns and vertical sedimentary sequences. Temporal and spatial scales of coupling are related, and with increasing scales the dominant controls shift from storm events to land cover to climatic and base‐level change and ultimately to the relationships between tectonics and accommodation space. Finally, future research challenges are identified. Modern dating techniques and sophisticated analysis of remotely sensed data can greatly improve our understanding of fan dynamics, and should lead to better cross‐scale integration between short‐term process‐based approaches and long‐term sedimentological applications, while maintaining high quality field‐based observations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Climate change and high magnitude mass wasting events pose adverse societal effects and hazards, especially in alpine regions. Quantification of such geomorphic processes and their rates is therefore critical but is often hampered by the lack of appropriate techniques and the various spatiotemporal scales involved in these studies. Here we exploit both in situ cosmogenic beryllium-10 (10Be) and carbon-14 (14C) nuclide concentrations for deducing exposure ages and tracing of sediment through small alpine debris flow catchments in central Switzerland. The sediment cascade and modern processes we track from the source areas, through debris flow torrents to their final export out into sink regions with cosmogenic nuclides over an unprecedented five-year time series with seasonal resolution. Data from a seismic survey and a 90 m core revealed a glacially overdeepened basin, filled with glacial and paraglacial sediments. Surface exposure dating of fan boulders and radiocarbon ages constrain the valley fill from the last deglaciation until the Holocene and show that most of the fan existed in early Holocene times already. Current fan processes are controlled by episodic debris flow activity, snow (firn) and rock avalanches. Field investigations, digital elevation models (DEMs) of difference and geomorphic analysis agree with sediment fingerprinting with cosmogenic nuclides, highlighting that the bulk of material exported today at the outlet of the subcatchments derives from the lower fans. Cosmogenic nuclide concentrations steadily decrease from headwater sources to distal fan channels due to the incorporation of material with lower nuclide concentrations. Further downstream the admixture of sediment from catchments with less frequent debris flow activity can dilute the cosmogenic nuclide signals from debris flow dominated catchments but may also reach thresholds where buffering is limited. Consequently, careful assessment of boundary conditions and driving forces is required when apparent denudation rates derived from cosmogenic nuclide analysis are upscaled to larger regions. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Effective river management strategies require an understanding of how fluvial processes vary both spatially and temporally. Here, we examine the natural range of variability in the Conejos River Valley, southern Colorado, through documentation of terrace morphostratigraphic and sedimentological characteristics as well as through investigation of sediment contributions from headwaters, hillslopes and tributary streams. Additionally, soil development and radiocarbon ages, together with local and regional paleoclimate reconstructions, were used to infer the range of processes acting in this system. Since de‐glaciation, the Conejos River has fluctuated between episodes of bedrock strath formation, aggradation and vertical incision. Morphostratigraphic relationships, soil development and radiocarbon ages enable us to propose a chronology for periods of alluvial deposition (around 8·9–7·6 ka, 5·5 ka and from 3·5 to 1·1 ka), separated by intervals of fluvial incision. We infer potential forcing mechanisms by utilizing multiple working hypotheses. Specifically, we discuss the potential for increases in sediment supply during periods of (1) para‐glacial adjustment, (2) climatic cooling, (3) increased frequency of climate change and (4) increased fire frequency or severity. We also consider the effects of changes in stream discharge and extreme storm occurrence. We conclude that combinations of these processes, operating at different times, have contributed to sediment mobilization since de‐glaciation. Stream and landform morphology also varies longitudinally due to the influence of remnant glacial topography. In particular, valley bottom overdeepening at tributary junctions has resulted in incision and strath formation into unlithified glacial deposits (i.e. fill‐cut terraces) rather than bedrock in some reaches. Overall, the Conejos fluvial system has varied significantly both temporally and spatially since de‐glaciation and appears to be sensitive to changes in sediment supply related to Holocene scale climate fluctuations. This natural range of variability must therefore be a key consideration in any future stream management policies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In order to understand the differences in the suspended sediment and total dissolved solid (TDS) yield patterns between the glacial and non‐glacial catchments at the headwaters of Urumqi River, northwestern China, water samples were collected from a glacier catchment and an empty cirque catchment within the region, during three melting seasons from 2006 to 2008. These samples were analyzed to estimate suspended sediment and TDS concentrations, fluxes and erosion rates in the two adjoining catchments. There were remarked differences in suspended sediment and TDS yield patterns between the two catchments. Suspended sediment concentrations were controlled mainly by the sediment source, whereas TDS concentrations were primarily related to the hydrologic interaction with soil minerals. Generally, the glacial catchment had much higher suspended sediment and TDS yields, together with higher denudation rates, than the non‐glacial catchment. Overall, glacial catchment was mainly dominated by physical denudation process, whereas the non‐glacial catchment was jointly influenced by physical and chemical denudation processes. The observed differences in material delivery patterns were mainly controlled by the runoff source and the glacial processes. The melting periods of glacier and snow were typically the most important time for the suspended sediment and TDS yields. Meanwhile, episodic precipitation events could generate disproportionately large yields. Subglacial hydrology dynamics, glaciers pluck and grind processes could affect erodibility, and the large quantities of dust stored on the glacier surface provided additional sources for suspended sediment transport in the glacial catchment. These mechanisms imply that, in response to climate change, the catchment behaviour will be modified significantly in this region, in terms of material flux. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Sand and gravel tailings from nineteenth century open‐pit hydraulic gold mines formed large alluvial fans at tributary con?uences in the northwestern Sierra Nevada, California. In the Bear River watershed, several of these fans were so large that they blocked main channels for decades. Some channels not only aggraded deeply, but also moved laterally and cut across the inner bends of valley spurs. Now locked in bedrock channels, these valley‐spur cutoffs impose local controls on geomorphic, hydraulic, and sedimentary processes. One cutoff has incised 25 m into bedrock over the past century (25 cm a?1) with rapid initial incision rates of up to 50 cm a?1 (1884–1890). Recognition of spur cutoffs in the geological record may help to identify large landslides and provide an analogue for a type of natural earth?ll dam spillway not prone to catastrophic failures. Tailing fans, valley‐spur cutoffs, and the sediment they trap are described from contemporary accounts and recent ?eld conditions in the Bear River watershed. These anthropogenic changes represent a major shift in the watershed from supply‐limited to transport‐limited sediment budgets and a change in geomorphic processes away from long‐term drainage evolution dominated by ingrown meanders. The large volumes of mining sediment stored in these landforms will be slowly released over the next millennium and could be signi?cant to contemporary ecological and public health issues due to recent ?ndings of high mercury loadings associated with hydraulic mines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This study investigates the post‐glacial development of four small river–lake systems in the Weichselian belt of northern central Europe. The valleys investigated are part of an immature drainage system characterized by frequent and abrupt changes in flow direction and the presence of numerous stagnant‐ice depressions in the valley course. The depressions contain thick sedimentary sequences which provide excellent archives for the reconstruction of the post‐glacial valley development. Study results indicate that the valleys reuse segments of former subglacial meltwater channels. During the Late Pleniglacial these channels carried meltwater streams. Stagnant‐ice melting occurred in stages from the Oldest Dryas to the early Holocene and was often followed by the formation of lakes in the valley course. Flow reversals occurred during the Late‐glacial–Holocene transition and were in response to general base‐level lowering caused by stagnant‐ice melting, headwater erosion and lake overspills. Lacustrine deposition typically started during the early Late‐glacial comprising mainly silicate gyttjas, whereas organic gyttjas and peats accumulated during the Allerød. The Younger Dryas is associated with a marked increase in fluvial and aeolian sedimentation, and lake‐level high stands. This was followed by early Holocene lake‐level low stands and a subsequent stabilization phase with decreasing silicate input and increasing organic lacustrine deposition. In general, dramatic changes in Late Pleniglacial to early Holocene sedimentation suggest that small‐scale catastrophic events played a more important role in triggering geomorphic changes then previously recognized. Infilling continued until peat accumulation and terrestrialization of lake basins became widespread during the mid‐ to late Holocene. Beginning in the late Holocene anthropogenic influences become important mainly involving an increase in sediment supply due to forest clearing and land use, followed by mill stowage, river course correction and anthropogenic lake‐level manipulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper adopts standard tests developed in temperate catchment research to determine the total phosphorus (TP) and the algal available (base‐extractable) phosphorus (NaOH–P) content of a wide range of glaciofluvial sediments from the Northern Hemisphere. We find that the TP content of these sediments is broadly similar to the P content of major rock types in Earth's crust (230–670 µgP/g) and so the TP yields of glacier basins may be high owing to the efficacy of suspended sediment evacuation by glacial meltwaters. We show that this is best achieved where subglacial drainage systems are present. The NaOH–P pool of the sediments is found to be low (1–23 µgP/g) relative to the TP pool and also to the NaOH–P pool of suspended sediments in temperate, non‐glacierized catchments. This most probably reflects the restricted duration of intimate contact between dilute meltwaters and glacial suspended sediments during the ablation season. Thus, despite the high surface‐area:volume ratio of glacial suspended sediments, the potential for P adsorption to mineral surfaces following release by dissolution is also low. Further, sorption experiments and sequential extraction tests conducted using glacial suspended sediments from two Svalbard catchments indicate that the generation of reactive secondary minerals (e.g. Fe‐ and other hydroxides) with a strong capacity to scavenge P from solution (and thereby promote the continued dissolution of P) may also be limited by the short residence times. Most P is therefore associated with poorly weathered, calcite/apatite‐rich mineral phases. However, we use examples from the Svalbard glacier basins (Austre Brøggerbreen and Midre Lovénbreen) to show that the high sediment yields of glaciers may result in appreciable NaOH–P loading of ice‐marginal receiving waters. Again, the importance of subglacial drainage is highlighted, as it produces a major, episodic release of NaOH–P at Midre Lovénbreen that results in a yield (8·2 kg NaOH–P/km2/year) more than one order of magnitude greater than that at Austre Brøggerbreen (where subglacial drainage is absent and the yield is 0·48 kg NaOH‐P/km2/year). Therefore, as since both detrimental and beneficial effects of sediment‐bound P loading in ice marginal receiving waters are possible (i.e. either reduced primary productivity owing to increased turbidity or P fertilization following desorption) there is a pressing need to assess the ambient P status of such environments and also the capacity for ice‐marginal ecosystems to adapt to such inputs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The rates and styles of channel adjustments following an abrupt and voluminous sediment pulse are investigated in the context of site and valley characteristics and time‐varying sediment transport regimes. Approximately 10.5 x 106 m3 of stored gravel and sand was exposed when Barlin Dam failed during Typhoon WeiPa in 2007. The dam was located on the Dahan River, Taiwan, a system characterized by steep river gradients, typhoon‐ and monsoon‐driven hydrology, high, episodic sediment supply, and highly variable hydraulic conditions. Topography, bulk sediment samples, aerial photos, and simulated hydraulic conditions are analyzed to investigate temporal and spatial patterns in morphology and likely sediment transport regimes. Results document the rapid response of the reservoir and downstream channel, which occurred primarily through incision and adjustment of channel gradient. Hydraulic simulations illustrate how the dominant sediment transport regime likely varies between study periods with sediment yield and caliber and with the frequency and duration of high flows. Collectively, results indicate that information on variability in sediment transport regime, valley configuration, and distance from the dam is needed to explain the rate and pattern of morphological changes across study periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

20.
On the high altitude polar plateau of Amundsenisen, western Dronning Maud Land, East Antarctica, a subglacial valley, with a broad horizontal valley floor interpreted as a sediment floodplain or valley delta, was studied by radio echo sounding. In addition, a small, probably glacial, valley was mapped within the same subglacial massif. Basal ice temperatures were calculated using field data on precipitation, air temperature and ice sheet thickness. Discoveries of old landforms which have been preserved more or less intact beneath the former Fennoscandian and Laurentide ice sheets have received increasing attention during the last decade. The aim of this study is to investigate whether preservation of landforms occurs under the East Antarctic Ice Sheet, and to discuss under that climatological and glaciological circumstances preservation may take place. The results show that the ice sheet covering the investigated localities is frozen to bed, and therefore has an insignificant erosional capability. The observations suggest that a large-scale subglacial sediment deposit and a small valley formed by glacial erosion have survived beneath a cold-based ice sheet marginal zone for a long time period. The process of glacial preservation, recognized for bedrock features and tentatively observed for sediment accumulations, should act on similar large-scale landforms under any cold-based ice sheet, present or past. On the basis of existing studies of the age and stability of the East Antarctic Ice Sheet, a Middle Pliocene age is suggested for the preserved landforms. The presence of the presumed sediment-filled valley further indicates that no prolonged periods of basal melting have occurred at the Amundsenisen study area during the ice sheet history, which includes the Quaternary glaciation periods. Finally, calculations of basal temperature for localities at different altitudes within the same subglacial massif were used to demonstrate local altitudinal control of glacial preservation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号