首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Stochastic modelling is applied to the analysis of local earthquake recordings, which are usually extremely rich in random incident-wave trains that are chaotically superimposed because of scattering effects in the Earth's crust. The presence in the seismic signal of effects connected with the scale of inhomogeneity in the lithosphere cannot be deterministically described in detail. The application of a stochastic second-order autoregressive model to accelerometric records for the higher magnitude (ML ? 6) Friuli earthquakes and to short-period seismometric records for the aftershocks of the strong earthquake of 6 May 1976 has allowed inferences to be drawn about the spectral properties of seismic signals and the propagation mechanisms of seismic waves. These inferences are based on an extremely small number of parameters of a mathematical model suitable for simultaneously describing the random sequence of scattered wave trains in the time and frequency domains. Useful physical information has been obtained about the dynamic characteristic correlation times and the predominant frequency of the seismic signals; moreover, the strength, σ2e(t), of the innovation of the stochastic process fitting the real digital data set has been estimated. From the envelopes of σ2e(t), the quantity heuristically used in the stochastic approach to describe seismic excitation, the·mean free-path between successive scatterings (l), or the equivalent diffusivity coefficient (d) and turbidity (g), and their dependence on seismic wave frequency have been investigated. For Friuli, using seismometric data at an epicentral distance of ~ 20 km and earthquakes with a magnitude just under 2, mean free-path estimates obtained by means of autoregressive parameters vary from ~ 5 km for the strong interaction model to ~ 30 km for the single scattering model. Furthermore, by means of accelerometric records for the strongest earthquakes in Friuli during May and September 1976, the dependence for the maximum of the seismic excitation on the epicentral distance R was estimated as (σ2e)maxR?ν (with ν 1.94 ± 0.13), which is in good agreement with results obtained for the same region using standard methods by means of acceleration peaks versus R. Lastly, stochastic modelling provides a method of estimating change versus time for the predominant frequency and characteristic correlation time of narrow band digital recordings. These two parameters were computed by means of autoregressive parameters in different physical situations and were found to be functions of the earthquake source, the instrumentation frequency response, and the Earth's filtering effects.  相似文献   

2.
We perform spectral analysis of records of meteorological (temperature, humidity, pressure of the atmosphere) and electrical (strength of quasi-static electric field and electric conductivity of air) parameters observed simultaneously at the Paratunka observatory during the solar events of October 21–31, 2003. Also, we use simultaneous records of X-ray fluxes of solar radiation, galactic cosmic rays, and the horizontal component of the geomagnetic field. We show that the power spectra of the meteorological parameters under fine weather conditions involve oscillations with a period of thermal tidal waves (T ~ 12 and 24 h) caused by the influx of thermal radiation of the Sun. During strong solar flares and geomagnetic storm of October 29–31 with a prevailing component of T ~ 24 h, their spectra involve an additional component of T ~ 48 h (the period of planetary-scale waves). With the development of solar and geomagnetic activities, the power spectra of atmospheric electric conductivity and electric field stress involve components of both thermal tidal and planetary-scale waves, which vary highly by intensity. In the power spectra of galactic cosmic rays accompanying the strong solar flares, components with T ~ 48 h were dominant with the appearance of additional (weaker by intensity) components with T ~ 24 h. The simultaneous amplification of components with T ~ 48 h in the power spectra of electric conductivity and electric field strength provides evidence of the fact that the lower troposphere is mainly ionized by galactic cosmic rays during strong solar flares and geomagnetic storms. The specified oscillation period with T ~ 48 h in their spectra, as well as in the spectra of X-ray radiation of the sun, is apparently caused by the dynamics of solar and geomagnetic activities with this time scale.  相似文献   

3.
荣扬名  王桥  丁霞  黄清华 《地球物理学报》2012,55(11):3709-3717
本文选择2011年3月11日M9.0日本东北大地震震中附近三个地磁台站16个月(2010/01/01—2011/04/30)的特低频地磁观测资料,采用去倾扰动分析方法,得到了这三个台站地磁记录的非均匀标度特征随时间的变化,提出了一种能反映地磁三分量非均匀标度特征同步变化的指标,并据此探讨了特低频地磁信号分形标度特征变化与日本东北大地震之间的可能关联性,初步结果表明,这三个台站的特低频地磁信号分形标度特征指标在日本东北大地震前25~50天左右呈现出同步的异常增加,基于磁静日观测资料的随机合成地磁数据的统计检验结果可知前述异常并非随机异常,而是一种具有统计显著性的异常,可能反映了日本东北大地震对周边地磁信号内在的非线性系统特征产生了有统计意义的影响.  相似文献   

4.
地震活动的随机标度和非线性标度律   总被引:1,自引:0,他引:1       下载免费PDF全文
把地震作为一个复杂系统,研究了地震活动的随机性质.当不考虑震级范围时,全球地震活动、人震的余震和区域震群均有以幂次律为特征的长尾现象.地震的强度由震级确定,具有一特定震级的地震可形成一个地震活动系列,很多这样的地震活动系列就形成具有各种震级的地震的集合.不同地震系列间的统计特征由随机标度来表征,随机标度表明了由地震震级分类的不同地震系列间统计时刻的标度关系.为了统一地方、区域和全球地震活动性的统计特性,引入了非线性标度率.  相似文献   

5.
Several studies revealed that peak discharges (Q) observed in a nested drainage network following a runoff-generating rainfall event exhibit power law scaling with respect to drainage area (A) as Q(A) = αAθ. However, multiple aspects of how rainfall-runoff process controls the value of the intercept (α) and the scaling exponent (θ) are not fully understood. We use the rainfall-runoff model CUENCAS and apply it to three different river basins in Iowa to investigate how the interplay among rainfall intensity, duration, hillslope overland flow velocity, channel flow velocity, and the drainage network structure affects these parameters. We show that, for a given catchment: (1) rainfall duration and hillslope overland flow velocity play a dominant role in controlling θ, followed by channel flow velocity and rainfall intensity; (2) α is systematically controlled by the interplay among rainfall intensity, duration, hillslope overland flow velocity, and channel flow velocity, which highlights that it is the combined effect of these factors that controls the exact values of α and θ; and (3) a scale break occurs when runoff generated on hillslopes runs off into the drainage network very rapidly and the scale at which the break happens is determined by the interplay among rainfall duration, hillslope overland flow velocity, and channel flow velocity.  相似文献   

6.
We present a preliminary study of the dependence of the statistical features of the soil motion due to seismic noise on the near-surface geology in the frequency range from 1 Hz to ∼ 40 Hz. In detail, we have investigated the 3D average squared soil displacement 〈r2〉 and the distribution function of the displacement flctuations at different geological sites. The anomalous scaling of the average squared soil displacement 〈r2(τ)〉~τα, and the Gaussian shape of the probability distribution function of its fluctuations suggest that the soil motion under the influence of the seismic noise is consistent with a persistent fractional Brownian motion (fBm) characterized by a scaling exponent 1.5 < α < 2. Therefore, the seismic noise-field, thought as a stochastic process, shows a markovian character with a memory longer than a pure Brownian motion (α = 1/2). Moreover, a dependence of such persistent behavior of the noise-field dynamics on the near-surface local geology has been found and it is discussed.  相似文献   

7.
Low frequency stochastic variations of the geomagnetic AE-index characterized by 1/fb-like power spectrum (where f is a frequency) are studied. Based on the analysis of experimental data we show that the Bz-component of IMF, velocity of solar wind plasma, and the coupling function of Akasofu are insufficient factors to explain these behaviors of the AE-index together with the 1/fb fluctuations of geomagnetic intensity. The effect of self-organized criticality (SOC) is proposed as an internal mechanism to generate 1/fb fluctuations in the magnetosphere. It is suggested that localized spatially current instabilities, developing in the magnetospheric tail at the initial substorm phase can be considered as SOC avalanches or dynamic clusters, superposition of which leads to the 1/fb fluctuations of macroscopic characteristics in the system. Using the sandpile model of SOC, we undertake numerical modeling of space-localized and global disturbances of magnetospheric current layer. Qualitative conformity between the disturbed dynamics of self-organized critical state of the model and the main phases of real magnetospheric substorm development is demonstrated. It is also shown that power spectrum of sandpile model fluctuations controlled by real solar wind parameters reproduces all distinctive spectral features of the AE fluctuations.  相似文献   

8.
We apply detrended fluctuation analysis (DFA) on fluxgate and search-coil data in ULF range (scales 10–90 s or 0.1–0.011 Hz) for the months January–April 2009 available from the South European GeoMagnetic Array stations: Castello Tesino (CST), Ranchio (RNC), and L’Aquila (AQU) in Italy; Nagycenk (NCK) in Hungary; and Panagyuriste (PAG) in Bulgaria. DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of non-stationarities. The H and Z magnetic field components at night hours (00-03 UT, 01–04 LT) and their variations at the stations CST, AQU, NCK, and PAG have been examined and their scaling characteristics are analyzed depending on geomagnetic and local conditions. As expected, the scaling exponents are found to increase when the K p index increases, indicating a good correlation with geomagnetic activity. The scaling exponent reveals also local changes (at L’Aquila), which include an increase for the Z (vertical) component, followed by a considerable decrease for the X (horizontal) component in the midst of February 2009. Attempts are made to explain this unique feature with artificial and/or natural sources including the enhanced earthquake activity in the months January–April 2009 at the L’Aquila district.  相似文献   

9.
For a low-level geomagnetic satellite survey, for which the motion of the satellite converts spatial variation into temporal variation, the limit on accuracy may well be background temporal fluctuations. The sources of the temporal fluctuations are current systems external to the Earth and include currents induced in the Earth due to these sources. The internal sources consist primarily of two components, the main geomagnetic field with sources in the Earth's core and a crustal geomagnetic field.Power spectra of the vertical geomagnetic field internal component that would be observed by a spacecraft in circular orbit at various altitudes, due to satellite motion through the spatially varying geomagnetic field, are compared to power spectra of the natural temporal fluctuations of the geomagnetic field vertical component (natural noise) and to the power spectrum for typical fluxgate magnetometer instrument noise. The natural noise is shown to be greater than this typical instrument noise over the entire frequency range for which useful measurements of the geomagnetic field may be made, for all geomagnetic latitudes and all times. Thus there would be little benefit in reducing the instrument noise below the typical value of 10?4 gamma2 Hz?1 plus a 1/f component of 10 milligamma rms decade?1.For a given satellite altitude, there is a maximum frequency above which the natural noise is greater than the power spectrum of the crustal geomagnetic field vertical component. Below this maximum frequency, the situation is reversed. This maximum frequency depends on geomagnetic latitude (and to a lesser extent on time of day and season of year), being lower in the auroral zone than at lower latitudes. The maximum frequency is also lower at higher satellite altitudes. The maximum frequency determines the spatial resolution obtainable on a magnetic field map. The spatial resolution (for impulses) obtainable at low latitudes for a 100-km satellite altitude (possibly achievable by tethering a small satellite at this altitude to a space vehicle at a higher altitude) is 60 km, while at the auroral zone the obtainable spatial resolution is 100 km. At the higher satellite altitude of 300 km the obtainable spatial resolution is 230 km at low latitudes and 530 km at the auroral zone. At 500-km satellite altitude, the obtainable spatial resolution is 500 km at low latitudes, while maps cannot be made at all for the auroral zone unless the data are selected for “quiet” days.For the lower satellite altitudes, greater spatial resolution can be obtained than at higher altitudes. Furthermore since the crustal geomagnetic field power spectrum is larger at lower altitudes, the relative error due to the natural noise is less than for higher altitudes.  相似文献   

10.
A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral–time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.  相似文献   

11.
Vertical geomagnetic cutoff rigidities are obtained for the stations of the global network of neutron monitors via trajectory calculations for each year of the period from 1950 to 2020. Geomagnetic cutoff rigidities are found from the model of the Earth’s main field International Geomagnetic Reference Field (IGRF) for 1950–2015, and the forecast until 2020 is provided. In addition, the geomagnetic cutoff rigidities for the same period are obtained by Tsyganenko model T89 (Tsyganenko, 1989) with the average annual values of the Kp-index. In each case, the penumbra is taken into account in the approximation of the flat and power spectra of variations of cosmic rays. The calculation results show an overall decrease in geomagnetic cutoff rigidities, which is associated with the overall decrease and restructuring of the geomagnetic field during the reporting period, at almost all points.  相似文献   

12.
Hydrological studies focused on Hortonian rainfall–run‐off scaling have found that the run‐off depth generally declines with the plot length in power‐law scaling. Both the power‐law proportional coefficient and the scaling exponent show great variability for specific conditions, but why and how they vary remain unclear. In the present study, the scaling of hillslope Hortonian rainfall–run‐off processes is investigated for different rainfall, soil infiltration, and hillslope surface characteristics using the physically based cell‐based rainfall‐infiltration‐run‐off model. The results show that both temporally intermittent and steady rainfalls can result in prominent power‐law scaling at the initial stage of run‐off generation. Then, the magnitude of the power‐law scaling decreases gradually due to the decreasing run‐on effect. The power‐law scaling is most sensitive to the rainfall and soil infiltration parameters. When the ratio of rainfall to infiltration exceeds a critical value, the magnitude of the power‐law scaling tends to decrease notably. For different intermittent rainfall patterns, the power‐law exponent varies in the range of ?1.0 to ?0.113, which shows an approximately logarithmic increasing trend for the proportional coefficient as a function of the run‐off coefficient. The scaling is also sensitive to the surface roughness, soil sealing, slope angle, and hillslope geometry because these factors control the run‐off routing and run‐on infiltration processes. These results provide insights into the variable scaling of the Hortonian rainfall–run‐off process, which are expected to benefit modelling of large‐scale hydrological and ecological processes.  相似文献   

13.
Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.  相似文献   

14.
A technique to detect spectrum variations versus time along seismic signals is applied to coda waves of local earthquakes (Friuli, Northern Italy). The technique consists of an autoregressive modeling and utilizes nonlinear spectral analysis where the spectrum of stochastic processes is estimated as the transfer function of the filter that whitens the process under analysis. This approach appears to be particularly well suited to those investigations where automatic measurements of the instantaneous frequency have to be carried out on digital data. The detection of variations of the instantaneous frequency along the coda allows computation of seismic-Q in the lithosphere and its frequency dependence: the result obtained is $$Q = 100f^{0.4} $$ which appears to be strongly consistent with that, based on the estimate of the coda amplitude decay in the band including the most significant frequencies of the signals under analysis.  相似文献   

15.
A diffusion approximation for a network of continuous time reservoirs with power law release rules is examined. Under a mild assumption on the inflow processes, we show that for physically reasonable values of the power law constants, the system of processes converges to a multi-dimensional Gaussian diffusion process. We also illustrate how the limiting Gaussian process may be used to compute approximations to the original system of reservoirs. In addition, we study the quality of our approximations by comparing them to results obtained by simulations of the original watershed model. The simulations offer support for the use of the approximation developed here.  相似文献   

16.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

17.
A central issue in population ecology is to determine the structure of negative feedback-density depend process which regulates population dynamics and seasonal fluctuations. In this work the incidence of population density dependences and seasonality was examined in fruit orchards of three closely related pest species (Adoxophyes orana, Anarsia lineatella and (Grapholita) Grapholitha molesta). Analysis included 13 moth population time series during 2003–2011. Additionally, considering that time lags and seasonality are fundamental characteristics of ecological organisation and pest management, the work aimed to introduce a step wise algorithm to detect significant population feedbacks, moth seasonality and population synchronisation of nearby locations. In the proposed procedure, each population-time series was first analysed on the basis of autocorrelation and partial autocorrelation. Moreover, assuming that each of the ecological variable, observed at successive time points, consist of a stochastic process, autoregressive moving average ARMA(p,q) models and seasonal autoregressive moving average models SARMA(p,q)x(P,Q) S were fitted on data. The Akaike information criteria was further used by the stepwise algorithm for parameter optimization and model improvement. Model construction is accompanied by a presentation of the fitting results and a discussion of the heuristic benchmarks used to assess the forecasting performance of the models. Life cycles of populations belonging to same species appeared to synchronise by terms of their autocorrelation functions. Delayed density dependence and order was in most cases of lag:1 and 2, while lag >3 was not found more frequently as expected by chance. In A. orana and A. lineatella moth species lag = 1 delayed density dependence was significantly more frequent and in particular in nearby locations. However, the structure of the fitted models varied with respect to species and observation region. In some cases, seasonal models were considered to be more accurate in simulating moth population dynamics. Finally, to provide means in forecasting moth emergence and abundance, utile in pest management, the models were trained using 2003–2009 data sets and their forecasting performance were validated for each case using data sets of 2010–2011. In most cases, the constructed stochastic linear autoregressive models simulated the population outbreaks very well. Describing and forecasting stochastic population fluctuations is a basic tenet of theoretical and applied ecology, while detecting the relative roles of exogenous and endogenous mechanisms can partly describe the phenomenological behavior of pest population time series data and improve pest management.  相似文献   

18.
Variations in geomagnetic field data at different spectral frequencies and with different periods are observed during increased geomagnetic activity. The formed local structures depend on the field disturbance and contain information on the magnetic storm intensity and character of development. Numerical solutions and algorithms based on wavelet transforms, which make it possible to “automatically” detect periods of increased geomagnetic activity and identify and analyze the structures forming this process, have been proposed in order to study the time characteristics of geomagnetic field variations, using the H component as an example. The separated components, characterizing disturbances, make it possible to estimate variations in the field energy characteristics. An analysis of the constructed wavelet images makes it possible to trace the dynamics of variations in the H component the day before and during a magnetic storm.  相似文献   

19.
The results of determining the paleointensity of the Siberian traps sampled from the Kotui sequence, Truba ravine, Onkuchak Suite, and dated to Permian-Triassic are presented. Most of the H anc values for separate lava flows are significantly lower than the values of the present geomagnetic field at the observation point (approximately 50 μT). This is consistent with the known conclusion that the intensity of the geomagnetic field at the Permian-Triassic boundary was lower by a factor of two to three lower than its present value. We carried out the comparative analysis of the behavior of H an and VDM for two trap sequences (Kotui (the Onkuchak Suite) and Norilsk) from the standpoint of the eruptive pulse hypothesis. In both sections, the average VDM values and their dispersion are similar. For comparison, similar analysis of the VDM behavior is conducted for the Brunhes epoch and Miocene in the interval of 5–10 Ma. It is hypothesized that during the three considered periods, namely, the eruption of the Siberian traps, in the Brunhes epoch, and in Miocene (in the interval of 5–10 Ma), the time behavior of the geomagnetic field was close to a stationary stochastic process.  相似文献   

20.
A general constitutive equation for viscoelastic behaviour of rocks and minerals with fractional-order derivative is investigated. This constitutive law is derived based on differential geometry and thermodynamics of rheology, and the fractional order of derivative represents the degree of time delay. Analyzing some laboratory experimental data of high temperature deformation of rocks and minerals such as halite, marble and orthopyroxene, we propose how to determine the orders of fractional derivative for viscoelastic behaviours of rocks and minerals. The order is related to the exponents for the temporal scaling in the relaxation modulus and the stress power-law of strain rate, i.e., the non-Newtonian flow law, and considered as an indicator representing the macroscopic behaviour and microscopic dynamics of rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号