首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to provide a complete and reliable macroseismic knowledge of the events that stroke a large area in Central Italy on 7 and 11 May 1984. Previous studies, together with original accounts integrated with new and unpublished information, have been gathered and examined in order to re-evaluate macroseismic intensities in terms of the European Macroseismic Scale (EMS98). New intensity maps have been compiled; the total number of localities with available information for both the shocks increases from 1254 of the previous study to 1576. On the basis of the new dataset, the macroseismic magnitude of the first shock is MW 5.6 which is lower than the previous macroseismic computation (MW 5.7). Moreover, the topic of assessing macroseismic intensity in the presence of multiple shocks has been also investigated, proposing an unconventional approach to presenting the macroseismic data: an overall picture of the cumulative effects produced by all the seismic sequence is given to support a partial but faithful reconstruction of the second shock. This approach is inspired by the common experience in interpreting historical seismic sequences and gives a picture of the impact of the 1984 events on the territory.  相似文献   

2.
—?The problem of accounting for local soil effect on earthquake ground motion is especially urgent when assessing seismic hazard – recent needs of earthquake engineering require local site effects to be included into hazard maps. However, most recent works do not consider the variety of soil conditions or are performed for generalized site categories, such as “hard rock,”“soft soil” or “alluvium.” A technique of seismic hazard calculations on the basis of the Fourier Amplitude Spectra recently developed by the authors allows us to create hazard maps involving the influence of local soil conditions using soil/bedrock spectral ratios. Probabilistic microzoning maps may be constructed showing macroseismic intensity, peak ground acceleration, response and design spectra for various return periods (probability of exceedance), that allow optimization of engineering decisions. An application of this approach is presented which focused on the probabilistic microzoning of the Tashkent City.  相似文献   

3.
We present the results of probabilistic seismic hazard assessment for Iceland in the framework of the EU project UPStrat-MAFA using the so-called site approach implemented in the SASHA computational code. This approach estimates seismic hazard in terms of macroseismic intensity by basically relying on local information about documented effects of past seismic events in the framework of a formally coherent and complete treatment of intensity data. In the case of Iceland, due to the lack of observed intensities for past earthquakes, local seismic histories were built using indirect macroseismic estimates deduced from epicentral information through an empirical attenuation relationship in probabilistic form. Seismic hazard was computed for four exceedance probabilities for an exposure time of 50 years, equivalent to average return periods of 50, 200, 475 and 975 years. For some localities, further return periods were examined and deaggregation analysis was performed. Results appear significantly different from previous seismic hazard maps, though just a semi-qualitative comparison is possible because of the different shaking measure considered (peak ground acceleration versus intensity), and the different computational methodology and input data used in these studies.  相似文献   

4.
An instrumental validation is attempted of an innovative approach devoted to the quick individuation, from macroseismic data, of site amplification phenomena able to significantly modify seismic hazard levels expected on the basis of average propagation effects only. According to this methodology, two evaluations of hazard are performed at each investigated locality: the former, obtained by epicentral intensity data ‘reduced’ at the site through a probabilistic attenuation function and, the latter, computed by integrating such data with seismic effects actually observed at the site during past earthquakes. The comparison, for each locality, between these two hazard estimates allow to orientate the identification of those sites where local amplifications of earthquake ground motion could be significant. In order to check such methodology, indications obtained in this way from macroseismic data are compared with the estimates of transfer functions performed through the HVSR technique applied to microtremors. Results concerning municipalities located in a seismic area of Northern Italy indicate a good agreement between macroseismic and instrumental estimates.  相似文献   

5.
The possibility to obtain a more complete and unbiased long-term history of seismic shakings over large territories than is explicitly reported from inhabited localities is discussed in the paper. An approach proposed for this purpose consists in complementing the spatial distribution of the macroseismic effect of earthquakes by calculated intensities at localities where information on felt shakings is absent. The calculated intensity is obtained on the basis of data on the epicentral intensity and location of epicenters provided by earthquake catalogs. This approach is applied to the analysis of the history of seismic shaking in Spain. The calculated intensities are shown to be comparable in accuracy with the ordinary practice of intensity determinations at national seismological centers.  相似文献   

6.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

7.
Seismic intensity, measured through the Mercalli–Cancani–Sieberg (MCS) scale, provides an assessment of ground shaking level deduced from building damages, any natural environment changes and from any observed effects or feelings. Generally, moving away from the earthquake epicentre, the effects are lower but intensities may vary in space, as there could be areas that amplify or reduce the shaking depending on the earthquake source geometry, geological features and local factors. Currently, the Istituto Nazionale di Geofisica e Vulcanologia analyzes, for each seismic event, intensity data collected through the online macroseismic questionnaire available at the web-page www.haisentitoilterremoto.it. Questionnaire responses are aggregated at the municipality level and analyzed to obtain an intensity defined on an ordinal categorical scale. The main aim of this work is to model macroseismic attenuation and obtain an intensity prediction equation which describes the decay of macroseismic intensity as a function of the magnitude and distance from the hypocentre. To do this we employ an ordered probit model, assuming that the intensity response variable is related through the link probit function to some predictors. Differently from what it is commonly done in the macroseismic literature, this approach takes properly into account the qualitative and ordinal nature of the macroseismic intensity as defined on the MCS scale. Using Markov chain Monte Carlo methods, we estimate the posterior probability of the intensity at each site. Moreover, by comparing observed and estimated intensities we are able to detect anomalous areas in terms of residuals. This kind of information can be useful for a better assessment of seismic risk and for promoting effective policies to reduce major damages.  相似文献   

8.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

9.
探讨地震宏观破坏场分布的影响因素   总被引:3,自引:0,他引:3  
李闽峰  李圣强  陈颙 《中国地震》2000,16(4):293-306
提出震后根据仪器定位的微观震中和断层构造的关系快速确定可能的宏观震中位置,并依此使用烈度经验分布模型来进行震害快速评估。这将提高直接用微观震中位置进行震害快速评估方法的精度。通过对全国133个主要地震的微观震中与宏观震中偏离量进行统计可知。偏离量在35km范围内的占88%,其余基本都在75km范围内。这样就给出了判定宏观震中的重点区域和分析区域。详细分析南北地震带66个震例及其与断层空间分布特征的关系。以及震源机制解结果后发现,影响宏观震中偏离的因素除仪器定位本身的误差外,主要还有断层展布方向、活动规模、断层相互交接特征及震级大小等。通过对这些影响因素的分类处理分析,建立了震后室内快速判定可能的宏观震中位置的原则和步骤。以该方法为基础,通过建立包含有关因素的全国断层数据库,即可在实际的震害快速评估中得以应用。  相似文献   

10.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

11.
强震区人工岩质路堑边坡的破坏及稳定性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
山区道路沿线的人工边坡很多。强震时,这些边坡经常会出现严重的破坏,除直接造成的损失而外,还会断绝交通给防震、抗震救灾带来极大的困难。本文通过云南通海、昭通、辽宁海城等地震区、公路和铁路的人工岩质路堑边坡的宏观震害资料,试图对此类边坡的抗地震稳定性及其受震破坏的规律性进行分析以探求震区岩质边坡稳定条件,为设计此类的边坡提供必要的依据。  相似文献   

12.
For the seismic hazard evaluation of the region including the southern Calabro-Peloritanian Arc and southeastern Sicily, the determination of the macroseismic virtual intensity distributions has been carried out, characteristic of the seismogenic zones that fall within the area in study, starting with the structural framework of the region and from the analysis of the observed intensity effected through suitable filters. The macroseismic parameters, derived from such virtual distributions and used for seismic hazard evaluation, are not only a reference for eventual subsequently deeper knowledge referable to the need for a better characterization of the reference modelling, but distinguish themselves as an essential instrument for the definition of seismic hazard scenarios correlated to seismic events that take place in single seismogenic zones.  相似文献   

13.
A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.  相似文献   

14.
A procedure is proposed for the reconfiguration of the macroseismic planes relative to earthquakes that, being characterized by a reduced number of points of observed intensity due to a lack of information, or having the epicenter very close to the coastline, are characterized by an incomplete distribution of observed intensity levels. The design of a plurality of virtual areas, through which a distribution of intensity consistent with an anisotropic model of attenuation is depicted, allows a reliable determination of macroseismic parameters of the same seismic event.  相似文献   

15.
Synthetic isoseismals of three earthquakes in California and Nevada   总被引:1,自引:0,他引:1  
Recent tests on a series of earthquakes in California and Nevada suggest that in some regions the approximate shapes of the territories with equal earthquake-induced damage (expressed in terms of macroseismic intensity) could be synthetically traced out with a simple formula. This formula takes into account some gross features of the source: depth and length, unilateral or bilateral rupture, radiation patterns, rupture velocity, and directivity. Having been formulated on an empirical basis, the formula is however compatible with the so-called asymptotic approach, in which the far-field component of the Green's function is used. This paper presents the synthetic isoseismals of the earthquakes at Cedar Mountain, Nevada, 1932; Fairview Peak-Dixie Valley, Nevada, 1954; and Coalinga, California, 1983. An overall consistency, from acceptable to remarkable, between the observed intensity patterns and the synthetically back-predicted intensity has been obtained for them. Where the detailed modelling techniques available today are inapplicable, due to insufficient information on the features of the seismic sources, or to save time and money, the new formula may be utilizable for improving seismic hazard calculations.The formula was also used inversely for back-predicting geometric-kinematic parameters of the Coalinga 1983 earthquake from macroseismic maps. This gave characteristics for its source which are in good agreement with the majority of data inferred from modelling and from analyzing modern instrumental recordings. This striking result opens new perspectives in retrieving information on the source of ancient earthquakes for which only macroseismic information is available.  相似文献   

16.
Measurement theory is applied to the seismic intensity scales for the purpose of classifying them. Some basic tenets of scale classification are discussed, along with properties of scales of different ranks. The seismic scale is tested for uniformity. It is shown that the Mercalli-type seismic intensity scales at present in use have the rank of an interval scale, thus proving that arithmetic operations can be applied to macroseismic estimates expressed in the standard intensity grades.  相似文献   

17.
This study analyses the performance of residential buildings in the town of Hveragerði in South Iceland during the 29 May 2008 Mw 6.3 Ölfus Earthquake. The earthquake occurred very close to the town, approximately 3–4 km from it. Ground shaking caused by the earthquake was recorded by a dense strong-motion array in the town. The array provided high-quality three-component ground acceleration data which is used to quantify a hazard scenario. In addition, surveys conducted in the town in the aftermath of the earthquake have provided information on macroseismic intensity at various locations in the town. Detailed information regarding the building stock in the town is collected, and their seismic vulnerability models are created by using building damage data obtained from the June 2000 South Iceland earthquakes. Damage to buildings are then simulated by using the scenario hazard and vulnerability models. Damage estimates were also obtained by conducting a survey. Simulated damage based on the scenario macroseismic intensity is found to be similar to damage estimated from survey data. The buildings performed very well during the earthquake—damage suffered was only 5 % of the insured value on the average. Correlation between actual damage and recorded ground-motion parameters is found to be statistically insignificant. No significant correlation of damage was observed, even with macroseismic intensity. Whereas significant correlation was observed between peak ground velocity and macroseismic intensity, neither of them appear to be good indicators of damage to buildings in the study area. This lack of correlation is partly due to good seismic capacity of buildings and partly due to the ordinal nature of macroseismic intensity scale. Consistent with experience from many past earthquakes, the survey results indicate that seismic risk in South Iceland is not so much due to collapse of buildings but rather due to damage to non-structural components and building contents.  相似文献   

18.
This paper begins with a critical assessment of the concept of macroseismic intensity, on which traditional scales, such as MSK and EMS, are based. The main shortcoming identified is the model's failure to consider the spectral features of ground motion. This omission may lead to erroneous seismic zonation, as shown in the paper. As a result, the model is of little interest to engineers who must design and build safe structures while adopting economical solutions. The paper presents a way to radically improve this situation. The starting point for this approach was the experience of the destructive Vrancea earthquake of 1977.03.04, which made it clear that intensity appears to be different for structures having natural periods pertaining to different spectral domains. The solution proposed to the shortcomings of the traditional intensity concept is postulated on a system of analytical expressions, covering definitions of global intensities, of intensities related to oscillation frequency and of intensities related to a definite spectral band. The latter definition lies at the basis of a definition of discrete intensity spectra. Illustrative applications are presented, in relation to global intensities and to discrete intensity spectra. We then analyze an illustrative case in which the use of traditional macroseismic survey techniques led to erroneous seismic zonation. Finally, some conclusions and recommendations are presented. Based on the authors?? long-term experience, we strongly recommend close interaction between seismologists and engineers in working groups and joint projects targeted on radical improvement of the basic concepts of seismic intensity and of specific analysis procedures.  相似文献   

19.
The seismic hazard for the Calabro-Sicilian area is evaluated using an anisotropic formulation of the Grandori attenuation law. For each macroseismic field two main directions are identified: minimum and maximum attenuation of the macroseismic intensity. The results of the investigation show that the anisotropic formulation improves the compatibility level of the model (with respect to the isotropic one) with the intensities observed and produces probabilistic expected intensities which compare favourably with the values of seismic history in the investigated area when the zonation defined by the Messina University research group was used.  相似文献   

20.
In the process of updating existing PSHA maps in Central Asia, a first step is the evaluation of the seismic hazard in terms of macroseismic intensity by applying a data driven method. Following the Site Approach to Seismic Hazard Assessment (SASHA) [11], the evaluation of the probability of exceedance of any given intensity value over a fixed exposure time, is mainly based on the seismic histories available at different locations without requiring any a-priori assumption about seismic zonation. The effects of earthquakes not included in the seismic history can be accounted by propagating the epicentral information through a Intensity Prediction Equation developed for the analyzed area. In order to comply with existing building codes in the region that use macroseismic intensity instead of PGA, we evaluated the seismic hazard at 2911 localities using a macroseismic catalog composed by 5322 intensity data points relevant to 75 earthquakes in the magnitude range 4.6–8.3. The results show that for most of the investigated area the intensity having a probability of at least 10% to be exceeded in 50 years is VIII. The intensity rises to IX for some area struck by strong earthquakes in the past, like the Chou-Kemin-Chilik fault zone in northern Tien-Shan, between Kyrgyzstan and Kazakhstan, or in Gissar range between Tajikistan and Uzbekistan. These values are about one intensity unit less than those evaluated in the Global Seismic Hazard Assessment Program (GSHAP; Ulomov, The GSHAP Region 7 working group [29]). Moreover, hazard curves have been extracted for the main towns of Central Asia and the results compared with the estimates previously obtained. A good agreement has been found for Bishkek (Kyrgyzstan) and Dushanbe (Tajikistan), while a lower probability of occurrence of I=VIII has been obtained for Tashkent (Uzbekistan) and a larger one for I=IX in Almaty (Kazakhstan).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号