首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Arsenic occurrence in groundwater near the Cimino-Vico volcanoes (central Italy) was analysed considering the hydrostratigraphy and structural setting and the shallow and deep flows interacting within the Quaternary volcanics. Groundwater is the local source of drinking water. As documented in the past, arsenic in the groundwater has become a problem, and the European maximum allowable contaminant level was recently lowered to 10 μg/L. Chemical analyses of groundwater were conducted, sampled over an area of about 900 km2, from 65 wells and springs representative of the volcanic aquifer and thermal waters. Considering the type of aquifer, the nature of the aquifer formation and its substratum, the hydrochemical data highlight that the arsenic content of the groundwater is mainly connected with the hydrothermal processes in the volcanic area. Thermal waters (54–60°C) fed from deep-rising fluids show higher arsenic concentrations (176–371 μg/L). Cold waters sampled from the volcanic aquifer are characterized by a wide variability in their arsenic concentration (1.6–195 μg/L), and about 62% exceed the limit of 10 μg/L. Where the shallow volcanic aquifer is open to deep-rising thermal fluids, relatively high arsenic concentrations (20–100 μg/L) are found. This occurs close to areas of the more recent volcano-tectonic structures.  相似文献   

2.
Groundwater arsenic survey in Cachar and Karimganj districts of Barak Valley, Assam shows that people in these two districts are drinking arsenic-contaminated (max. 350 μg/l) groundwater. 66% of tubewells in these two districts have arsenic concentration above the WHO guideline value of 10 μg/l and 26% tubewells have arsenic above 50 μg/l, the Indian standards for arsenic in drinking water. 90% of installed tubewells in these two districts are shallow depth (14–40 m). Shallow tubewells were installed in Holocene Newer Alluvium aquifers are characterised by grey to black coloured fine grained organic rich argillaceous sediments and are mostly arsenic contamination in groundwater. Plio-Pleistocene Older Alluvium aquifers composed of shale, ferruginous sandstone, mottle clay, pebble and boulder beds, which at higher location or with thin cover of Newer Alluvium sediments are safe in arsenic contamination in groundwater. 91% of tubewell water samples show significantly higher concentrations of iron beyond its permissible limit of 1 mg/l. The iron content in these two districts varies from 0.5 to as much as 48 mg/l. Most of the arsenic contaminated villages of Cachar and Karimganj districts are located in entrenched channels and flood plains of Newer Alluvium sediments in Barak-Surma-Langai Rivers system. However, deeper tubewells (>60 m) in Plio-Pleistocene Older Alluvium aquifers would be a better option for arsenic-safe groundwater. The arsenic in groundwater is getting released from associated Holocene sediments which were likely deposited from the surrounding Tertiary Barail hill range.  相似文献   

3.
 Simplified approaches are often used to model the removal of groundwater contamination. These approaches can yield poor remediation schemes because they incorrectly portray the effects of multiple pumping wells. In this study, a pumping configuration designed by graphically overlaying capture zones having an identical, quasi-elliptical shape was evaluated with a numerical mass transport model. After a 3-year period (within which the hypothetical aquifer was to be remediated) the contaminant mass had been reduced by 77%. Due to stagnation zones which developed between extraction wells, approximately 15 years of pumping was required to remediate the aquifer with the overlay configuration. An alternative design, consisting of an extraction well between two injection wells along the long axis of the plume, removed the contaminant within the 3-year design period. Received: 23 October 1995 · Accepted: 18 June 1996  相似文献   

4.
抽出 -处理系统设计多侧重于考虑修复初期的效率,在修复后期通常效率低下,产生拖尾现象,其优化的关键在于布设的井群系统能否高效抽出受污染的地下水体。利用溶质运移数值模拟可为井群布设和抽水方案优化提供依据。本研究旨在优化我国北方某化肥厂高浓度氨氮污染的地下水体的抽出 -处理修复系统,节约时间和成本。在水文地质调查及氨氮浓度监测的基础上,综合考虑井数、抽水天数和总抽水量三个变量,采用中轴线法与三角形法结合的布井方法,利用GMS软件反复试算,筛选出三种较优抽水方案并进一步模拟优化,最终从中选出最优抽水方案。结果,相比最初方案(方案1),最优方案(方案3)将修复周期缩短了23个月,抽水总量减少了约31.9×104 m3,而抽水井数量仅增加了1口。该模型进行了稳定流水位拟合验证和4期非稳定流实测溶质浓度验证,较符合实际。结果表明,针对抽水井数量不足引起的拖尾问题,关键因素在于合理的井位布设与分阶段的抽水模式。在修复过程中,及时对地下水中污染物进行监测,并随着污染羽变化过程及时调整抽水方案,保证高浓度区一直有抽水井进行较大流量抽水,可有效提高修复效率并缩短修复周期。  相似文献   

5.
The objective of the article presented herein is to highlight the specific issue of the protection of water sources in the vicinity of golf courses. Currently we have experienced the construction of a large number of golf courses, which are often found in areas where the protection of natural groundwater resources is needed. In this article, limit conditions are specified, which could be used in construction of other golf courses in the world, where there is a potential threat of contamination of groundwater resources. The issue is demonstrated on a case study in the area of a water resource, Rusovce. A major concern of golf courses is the fact that in an apparently clean environment of these anthropogenic structures contamination occurs, resulting from the maintenance, and the current legislation does not address this specific group of areas. These are particularly dangerous substances derived from fertilizer and turf protection, in particular the use of pesticides (insecticides, herbicides, fungicides, acaricides, e.g. nematocides, and related products, such as growth regulators used for plant protection). The results of the modelling at the water source, Rusovce, show that the combination of negative factors (for example, the groundwater table level close to the surface along with extremely high precipitation totals or the areas flooding and the lack of a golf course bedrock sealing) the limit value of 0.100 μg/l of pesticides concentration in groundwater was exceeded up to 0.880 μg/l. Similarly, such excess may occur in the case of an emergency situation (for example, the spilling of the barrel with the pesticide), where the concentration of pesticides in groundwater may be increased up to 0.874 μg/l in standard conditions (without flooding with an average depth of groundwater table level beneath the terrain). But even under a standard level of security for the establishment and operation of a golf course and standard procedures for the maintenance of the lawn, the concentration of pesticides in the wells reached 0.0001 μg/l.  相似文献   

6.
In this paper, a simple but accurate method (generalized large well method) is presented to assess groundwater level trends during mine exploitation. This method includes a mathematical model of confined–unconfined well flow and a corresponding analytical solution. Based on the method, a case study was analyzed with data from the Yimin open-pit mine. As a result, the radius of groundwater level rose, along with the increase of the exploitation intensity. Moreover, a suitable value of pumping flow could be beneficial to understanding potential groundwater contamination concerns. Additionally, it has also been predicted that the groundwater level of the Yimin open-pit mine will change within the next 3 years. The Yimin open-pit mine case study demonstrates the validity of the analytical method explained herein. The presented methodology provides a theoretical foundation for assessment of groundwater changing trends in other open-pit mines with similar hydrogeological conditions.  相似文献   

7.
Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.  相似文献   

8.
The subsurface migration of methyl tertiary butyl ether (MTBE) and benzene towards a drinking-water production site in Belgium was monitored for 9 years. A large gasoline spill at a nearby fuel station had caused a 500-m long and 50-m-wide pollution plume of MTBE (10?30 mg/L) and benzene (2?10 mg/L). In order to prevent any intrusion of pollutants into the drinking-water supply, a conceptual model was used to design a pump-and-treat system that intercepted the gasoline-contaminated groundwater emanating from the spill. The contaminated soil in the spill zone was excavated. A numerical mass transport model was developed to evaluate the ongoing plume containment. The model describes the subsurface MTBE migration and was regularly updated, based on groundwater monitoring data and the measured mass of MTBE extracted with the pump-and-treat system. With continued interception pumping, the MTBE plume can be remediated in 14 years. Without it, MTBE and benzene concentrations up to 600 μg/L could have reached the drinking-water production site and the plume would persist for 9 years longer. Source zone treatment combined with plume interception pumping is a suitable risk-based remediation strategy for the containment of MTBE and benzene groundwater pollution.  相似文献   

9.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

10.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

11.
Agricultural coastal areas are frequently affected by the superimposition of various processes, with a combination of anthropogenic and natural sources, which degrade groundwater quality. In the coastal multi-aquifer system of Arborea (Italy)—a reclaimed morass area identified as a nitrate vulnerable zone, according to Nitrate Directive 91/676/EEC—intensive agricultural and livestock activities contribute to substantial nitrate contamination. For this reason, the area can be considered a bench test for tuning an appropriate methodology aiming to trace the nitrate contamination in different conditions. An approach combining environmental isotopes, water quality and hydrogeological indicators was therefore used to understand the origins and attenuation mechanisms of nitrate pollution and to define the relationship between contaminant and groundwater flow dynamics through the multi-aquifer characterized by sandy (SHU), alluvial (AHU), and volcanic hydrogeological (VHU) units. Various groundwater chemical pathways were consistent with both different nitrogen sources and groundwater dynamics. Isotope composition suggests a mixed source for nitrate (organic and synthetic fertilizer), especially for the AHU and SHU groundwater. Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation was inefficient at removing NO3? to less than the human consumption threshold of 50 mg/L. Various factors contributed to control the distribution of the redox processes, such as the availability of carbon sources (organic fertilizer and the presence of lagoon-deposited aquitards), well depth, and groundwater flow paths. The characterization of these processes supports water-resource management plans, future actions, and regulations, particularly in nitrate vulnerable zones.  相似文献   

12.
The concentrations of uranium, iron and the major constituents were determined in groundwater samples from aquifer containing uranyl phosphate minerals (meta-autunite, meta-torbernite and torbernite) in the Köprüba?? area. Groundwater samples from wells located at shallow depths (0.5–6 m) show usually near neutral pH values (6.2–7.1) and oxidizing conditions (Eh = 119–275 mV). Electrical conductivity (EC) values of samples are between 87 and 329 μS/cm?1. They are mostly characterized by mixed cationic Ca dominating bicarbonate types. The main hydrogeochemical process is weathering of the silicates in the shallow groundwater system. All groundwater in the study area are considered undersaturated with respect to torbernite and autunite. PHREEQC predicted UO2(HPO4) 2 2? as the unique species. The excellent positive correlation coefficient (r = 0.99) between U and PO4 indicates the dissolved uranium in groundwater would be associated with the dissolution of uranyl phosphate minerals. The groundwater show U content in the range 1.71–70.45 μg/l but they are mostly lower than US EPA (2003) maximum contaminant level of 30 μg/l. This low U concentrations in oxic groundwater samples is attributed to the low solubility of U(VI) phosphate minerals under near neutral pH and low bicarbonate conditions. Iron closely associated with studied sediments, were also detected in groundwater. The maximum concentration of Fe in groundwater samples was 2837 μg/l, while the drinking water guidelines of Turkish (TSE 1997) and US EPA (2003) were suggested 200 and 300 μg/l, respectively. Furthermore, iron and uranium showed a significant correlation to each other with a correlation coefficient (r) of 0.94. This high correlation is probably related to the iron-rich sediments which contain also significant amounts of uranium mineralization. In addition to pH and bicarbonate controlling dissolution of uranyl phosphates, association of uranyl phosphates with iron (hydr) oxides seems to play important role in the amount of dissolved U in shallow groundwater.  相似文献   

13.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

14.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

15.
Arsenic contamination of well water is a serious issue in the Nawalparasi District of the Terai region in Nepal. A local investigation was carried out on 137 tube wells in 24 communities of the district in December 2011. The investigation revealed that the average arsenic concentration in the tube wells was 350 μg/L, and that nearly 98 % of the wells exceeded the WHO guideline arsenic level limit of 10 μg/L. Highly contaminated well water, with more than 400 μg/L of arsenic, was found within the limited depth ranges of 18–22 and 50–80 m. High arsenic levels exceeding 500 μg/L were detected in shallower wells at Patkhauli, Mahuawa, Thulokunwar, and Goini located between 27.517° and 27.543°N and between 83.648° and 83.748°E. Boring sampling at five communities of Kashiya, Goini, Sanokunwar, Thulokunwar, and Mahuawa revealed two aquifers located at the two depths around 14–22 and 41–50 m in each community. Dark gray or black-colored peaty clay layers rich in organic matter were distributed at depths of 18–21 m beside the upper aquifers with high arsenic concentration in each community. Positive correlations were shown between iron and arsenic in the sediments from the five communities. It can be inferred that these results were caused by dissolution of iron-oxyhydroxide molecules with arsenic from solid phases. Microbial metabolisms have a great potential to induce the dissolution and release arsenic attached on the solid phases into aqueous phases depending on the level of redox potential and pH.  相似文献   

16.
Arsenic in groundwaters of the alluvial aquifer of Bardsir plain, SE Iran   总被引:1,自引:1,他引:0  
Bardsir plain is located in the central part of Kerman Province of Iran. The relative prevalence of arsenic-related cancers, the high concentration of arsenic in nearby plains, as well as the recharge of this aquifer through the mountains composed of high-sulfide volcanic rocks have been motivations of the authors to study the concentration of this element in Bardsir plain. Arsenic concentration was measured in 63 groundwater samples using inductively coupled plasma mass spectrometry method. The results were evaluated through iso-concentration maps, correlation diagrams, and multivariate statistical methods. Accordingly, the concentration of arsenic ranges from 1.3 to 464.5 μg/l with an average value of 134.2 μg/l. So, the groundwaters are enriched with arsenic to much higher levels than permitted for than drinking water acceptable level (10 μg/l). The high arsenic levels in groundwaters of Bardsir plain are ascribed to joint influence of decomposition of sulfides present in mountainous volcanic rocks and the mixing with hydrothermal waters in some locations. Supposedly, the prevalence of higher than 8 pH values has enhanced the release of arsenic from Fe-hydroxides generated during sulfide weathering process.  相似文献   

17.
The occurrence of uranium in groundwater is of particular interest due to its toxicological and radiological properties. It has been considered as a relevant contaminant for drinking water even at a low concentration. Uranium is a ubiquitously occurring radionuclide in the environment. Four hundred and fifty-six (456) groundwater samples from different locations of five districts of South Bihar (SB) were collected and concentrations of uranium (U) were analyzed using a light-emitting diode (LED) fluorimetric technique. Uranium concentrations in groundwater samples varied from 0.1 µg l?1 to 238.2 µg l?1 with an average value of 12.3 µg l?1 in five districts of Bihar in the mid-eastern Gangetic plain. This study used hot spot spatial statistics to identify the distribution of elevated uranium concentration in groundwater. The hypothesis whether spatial distribution of high value and low value of U is more likely spatially clustered due to random process near a uranium hotspot in groundwater was tested based on z score and Getis-Ord Gi* statistics. The method implemented in this study, can be utilized in the field of risk assessment and decision making to locate potential areas of contamination.  相似文献   

18.
Many wells in the Sanriku region used as sources for water supply systems were heavily contaminated by the tsunami of the 2011 great Tohoku earthquake on March 11 in 2011. To better understand the nature of the groundwater contamination by the tsunami inundation and to clarify the recovery process of contaminated groundwater at the study wells, groundwater monitoring has been conducted once or twice yearly since early summer in 2011. High and abnormal values of electric conductivity (EC), chloride ion concentration (CIC), Na+, Ca+, heavy metal ions, and heavier isotopes of the contaminated groundwater were also obtained in April and June 2011. The chemical elements have rapidly and exponentially decreased as a result of effective pumping of the contaminated groundwater from the study wells and because of abundant rainfall in 2011. In April 2015 (about 4 years after the tsunami inundation), the CIC and EC of the contaminated groundwater of two study wells in Minamisanriku town had reached pre-inundation values. The estimated residence times of groundwater of the two study wells were 105–118 days in the full-day pumping stage and 910–1000 days in the daytime-only pumping stage.  相似文献   

19.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

20.
Polycyclic aromatic hydrocarbons’ (PAHs) concentrations in bulk samples are commonly used to assess contamination but PAHs are unevenly distributed among particle-size fractions. Seventeen urban surface soil samples from the city of Xuzhou, China, were collected and then fractionated into five size fractions (2,000–300, 300–150, 150–75, 75–28, and <28 μm). The concentrations of 12 US EPA PAHs were measured using gas chromatograph/mass spectrometry in various fractions, and the bulk soil samples and distribution patterns of PAHs in different particle-size fractions were investigated. The mean concentration of total PAHs in bulk soil samples was 1,879 ng/g. The median concentrations for all individual PAH were higher for the 75–2,000 μm fraction than for the <75 μm fraction. The distribution factors for various PAHs in <28 μm soil fraction were closely correlated (r = ?0.661, p < 0.019) to bulk soil fugacity capacity. The values of PAH isomer indicated that traffic emissions might be the major origin of PAHs in Xuzhou surface soils. Spearman correlation analysis was performed and the result suggested that soil organic carbon might be a factor controlling the concentrations of PAHs in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号