首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.  相似文献   

2.
We present detailed observations of the formations of four distinct coronal dimmings during a flare of 17 September 2002, which was followed by an eruption of a huge coronal loop system, and then an over-and-out partial halo coronal mass ejection (CME), with the same direction as the loop system eruption but laterally far offset from the flare site. Among the four dimmings, two compact ones were symmetrically located in the opposite polarity regions immediately adjacent to the highly sheared magnetic polarity inversion line in the flare region, and hence were probably composed of bipolar double dimmings due to a flux-rope eruption and represented its evacuated footpoints. However, another nearby compact dimming and a remote diffuse one were formed in the opposite polarity footpoint regions of the eruptive loop system, and thus probably consisted of a pair of dimmings magnetically linked by the erupting loop system and also indicated its evacuated footpoints. The loop system might have played a role in guiding the erupting flare field and producing the over-and-out CME, but its eruption might simply have been pushed out by the erupting flare field, because there was no reconnection signature between them. From comparison with a derived potential-field source-surface (PFSS) magnetic configuration, our observations consistently suggest that the dimmings were formed in pairs and originated from the eruptions of the two different magnetic systems. We thus define them as “quadrupolar dimmings.”  相似文献   

3.
We study pre-eruptive, eruptive, and post-eruptive phenomena related to a CME that occurred on November 23, 2000 by means of joint analyses of data from various spectral ranges. Almost all known CME-associated phenomena were observed during this event, i.e., a filament eruption, solar flare, dimmings, and a post-eruptive arcade formation. Following a chain of events observed in various spectral ranges, we find that the event occurred in an activity complex consisting of active regions 9231 and 9238, and that it was triggered by a magnetic flux emergence, which caused a flare in AR 9231. In turn, the flare triggered activation and eruption of the filament followed by the CME and the flare in AR 9238 in which the post-eruptive arcade was observed. We discuss some characteristics of the flare and CME and also estimate the magnetic field strength in the coronal arcade to be about 200 G from spatially resolved polarization measurements in microwaves with radio telescopes. In this particular case, the only significant emission mechanism is optically thin free-free emission, and the possible contribution of nonthermal emissions cannot change our estimate of the magnetic field strength in the corona. However, generally one should make sure that the nonthermal contribution cannot be important in similar cases; otherwise, the magnetic field can be well overestimated. Here, we specifically address the identification technique of the radio emission mechanism.  相似文献   

4.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

5.
We investigate the early phase of the 13 February 2009 coronal mass ejection (CME). Observations with the twin STEREO spacecraft in quadrature allow us to compare for the first time in one and the same event the temporal evolution of coronal EUV dimmings, observed simultaneously on-disk and above-the-limb. We find that these dimmings are synchronized and appear during the impulsive acceleration phase of the CME, with the highest EUV intensity drop occurring a few minutes after the maximum CME acceleration. During the propagation phase two confined, bipolar dimming regions, appearing near the footpoints of a pre-flare sigmoid structure, show an apparent migration away from the site of the CME-associated flare. Additionally, they rotate around the ‘center’ of the flare site, i.e., the configuration of the dimmings exhibits the same ‘sheared-to-potential’ evolution as the postflare loops. We conclude that the motion pattern of the twin dimmings reflects not only the eruption of the flux rope, but also the ensuing stretching of the overlying arcade. Finally, we find that: i) the global-scale dimmings, expanding from the source region of the eruption, propagate with a speed similar to that of the leaving CME front; ii) the mass loss occurs mainly during the period of strongest CME acceleration. Two hours after the eruption Hinode/EIS observations show no substantial plasma outflow, originating from the ‘open’ field twin dimming regions.  相似文献   

6.
C. Zhu  D. Alexander  X. Sun  A. Daou 《Solar physics》2014,289(12):4533-4543
We study the interaction between an erupting solar filament and a nearby coronal hole, based on multi-viewpoint observations from the Solar Dynamics Observatory and STEREO. During the early evolution of the filament eruption, it exhibits a clockwise rotation that brings its easternmost leg in contact with the oppositely aligned field at the coronal hole boundary. The interaction between the two magnetic-field systems is manifested as the development of a narrow contact layer in which we see enhanced EUV brightening and bi-directional flows, suggesting that the contact layer is a region of strong and ongoing magnetic reconnection. The coronal mass ejection (CME) resulting from this eruption is highly asymmetric, with its southern portion opening up to the upper corona, while the northern portion remains closed and connected to the Sun. We suggest that the erupting flux rope that made up the filament reconnected with both the open and closed fields at the coronal hole boundary via interchange reconnection and closed-field disconnection, respectively, which led to the observed CME configuration.  相似文献   

7.
Wu  Y.Q.  Tang  Y.H.  Dai  Y.  Wu  G.P. 《Solar physics》2002,207(1):159-171
By using observations from the satellites of the International Solar Terrestrial Physics (ISTP) Observatories, the relationships among the coronal mass ejection (CME), the helmet streamer and the disappearing filament (DSF) have been studied. Our main conclusions are as follows: (1) The DSF disrupted the streamer, thus resulting in the restructuring of coronal field and causing the mass in the helmet streamer to form the CME. (2) The DSF under a helmet streamer and the sigmoid soft X-ray loop are possibly the precursors of the 6 January 1997 CME. (3) The energy stored in the filament circuit and the energy of the CME (include kinetic, potential and magnetic energies) are estimated and it is found that there was enough energy stored in the filament to provide the CME of 6 January 1997. (4) The CME's speed in response to the DSF is calculated. It is showed that the DSF can drive the CME to the observed speed.  相似文献   

8.
We present a case study of two successive filament eruptions at the southeast limb of the Sun observed by Solar Dynamics Observatory (SDO) on 2012 April 19. At the initial stage of the first filament (F1) eruption, one leg of the F1 moved toward the second filament (F2) and swept the F2. The interaction between two filaments occurred. After the leg of the F1 swept the F2, it returned from northeast to southwest following the F1 expansion. During the F1 eruption, the middle of the F1 exhibited an obvious twisted structure. The rising speed of the F1 was 85.6 km/s. The partial material of the F1 fell back to the surface along the other leg of the F1 after the F1 eruption and the falling speed was 311.6 km/s. A CME was observed by SOHO/LASCO after the F1 eruption. One of the bright flare ribbons and the dimming regions formed after the F1 eruption were found to move toward the F2. The propagation speeds of the flare ribbons were 4.7 km/s and 4.1 km/s and the propagation speeds of the dimmings were 3 km/s and 6.3 km/s. The small active region was emerging in the northern flank of the F2. The ejection and the falling plasma in the small active region produced the disturbance to the right part of the F2. When the F1 erupted, the large-scale overlying coronal loops of the F1 were pushed out toward the southeast of the Sun by its expanding. During the F1 eruption, the large-scale overlying coronal loops of the F2 began to open toward the southeast. Following the opening of the large-scale overlying coronal loops, the F2 became instable and began to erupt. The rising speed of the F2 was 300.1 km/s. A two-ribbon flare and a weak CME were formed after the F2 eruption. These observations evidenced that the interaction of two filaments and the opening of the large-scale overlying coronal loops caused by the F1 eruption are the most important reason that led to the F2 eruption. Our observations also support the standard solar flare model.  相似文献   

9.
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME.  相似文献   

10.
This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X-ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 R(?) above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.  相似文献   

11.
We have analyzed dimmings, i.e., regions of temporarily reduced brightness, and manifestations of a coronal wave in the famous event of 14 July 2000 using images produced with the EUV telescope SOHO/EIT. Our analysis was inspired by a paper by Andrews (2001, Solar Phys. 204, 181 (Paper I)), in which this event was studied using running-difference EIT images at 195 Å formed by subtraction of a previous image from each current one. Such images emphasize changes of the brightness, location, and configuration of observed structures occurring during the 12-min interval between two subsequent heliograms. However, they distort the picture of large-scale disturbances caused by a CME, particularly, dimmings. A real picture of dimmings can be obtained from fixed-base difference ‘de-rotated’ images. The latter are formed in two stages: first, the solar rotation is compensated using three-dimensional rotation of all images (‘de-rotation’) to the time of a pre-event heliogram, here 10:00 UT, and then the base heliogram is subtracted from all others. We show real dimmings to be essentially different from those described by Andrews (Paper I). The restructuring of large-scale magnetic fields in the corona in connection with the CME was accompanied by the appearance and growth of two large dimmings. One of them was located along the central meridian, southward of the eruption center, at the place of the pre-eruption arcade. Another dimming occupied the space between the flare region and a remote western active region. Several smaller dimmings were observed virtually over the whole solar disk, especially, within the northwest quadrant. We have also revealed a propagating disturbance with properties of a coronal wave in the northern polar sector, where no dimmings were observed. This fact is discussed in the context of probable association between dimmings and coronal waves. Having suppressed the ‘snowstorm’ produced in the EIT images by energetic particles, we have considered dimming manifestations in all four EIT pass bands of 171, 195, 284, and 304 Å as well as the light curves of the main dimmings including several later images at 195 Å. Our analysis shows that the major cause of the dimmings was density depletion that reached up to 30% in this event. The picture of dimmings implies that the CME in the Bastille Day event was an octopus-like bundle of some magnetic ropes, with the ‘arms’ being connected to several active regions disposed over almost the whole visible solar surface.  相似文献   

12.
We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are the absorption phenomena observed in the SOHO/EIT 304 Å channel, which were also visible in the EIT 195 Å channel, in the Hα line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multispectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of a coronal blast shock. The CME did not resemble a classical three-component structure, probably because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ~3×1015?g, which is close to the estimated mass of the CME. The falling material was responsible for the observed large-scale absorption phenomena, in particular, shallow widespread moving dimmings observed at 195 Å. By contrast, deep quasi-stationary dimmings observed in this band near the eruption center were due to plasma density decrease in coronal structures.  相似文献   

13.
An analysis is made of the Martens-Kuin filament eruption model in relation to observations of coronal mass ejections (CMEs). The field lines of this model are plotted in the vacuum or infinite resistivity approximation with two background fields. The first is the dipole background field of the model and the second is the potential streamer model of Low. The assumption is made that magnetic field evolution dominates compression or other effects which is appropriate for a low- coronal plasma. The Martens-Kuin model predicts that, as the filament erupts, the overlying coronal magnetic field lines rise in a manner inconsistent with observations of CMEs associated with eruptive filaments. Initially, the bright arc of a CME broadens in time much more slowly than the dark cavity between it and the filament, whereas in the model they broaden at the same rate or the bright arc broadens more rapidly than the dark cavity, depending on the background field. Thus, this model and, by generalization the whole class of so-called Kuperus-Raadu configurations in which a neutral point occurs below the filament, are of questionable utility for CME modeling. An alternate case is considered in which the directions of currents in the Martens-Kuin model are reversed resulting in a so-called normal polarity configuration of the filament magnetic field. In this case, a neutral line occurs above the current-carrying filament. The background field lines now distort to support the filament and help eject it. While the vacuum field results make this configuration appear very promising, a full two- or more-dimensional MHD simulation is required to properly analyze the dynamics resulting from this configuration.Presently NRC Senior Research Associate at NOAA, Space Environment Laboratory, Boulder, Colorado, U.S.A.At the NASA National Space Data Center.  相似文献   

14.
Pevtsov  Alexei A. 《Solar physics》2002,207(1):111-123
We use Yohkoh soft X-ray telescope data and H full-disk observations to study the evolution of chromospheric filaments and coronal sigmoids in 6 active regions in association with coronal mass ejections (CMEs). In two cases, CMEs are directly observed by the SOHO/LASCO C2 coronagraph. In four cases, other observations (magnetic clouds, geomagnetic storms, sigmoid-arcade evolution) are used as CME indicators. Prior to eruption, each active region shows a bright coronal sigmoidal loop and underlying H filament. The sigmoid activates, erupts and gets replaced by a cusp, or an arcade. In contrast, the H filament shows no significant changes in association with sigmoid eruption and CME. We explain these observations in a framework of the classical two-ribbon flare model.  相似文献   

15.
Fainshtein  V. G.  Rudenko  G. V.  Grechnev  V. V. 《Solar physics》1998,181(1):133-158
The magnetic field changes in the corona at the site of coronal mass ejections (CMEs) have been investigated using the potential field-source surface model. It is shown that a CME is accompanied by the opening of closed field lines that formed the streamer's helmet base prior to the onset of a coronal disturbance. Two to three days after the appearance of the CME, the field configuration at the location of the coronal ejection reverts approximately to the state pre-existing before the generation of the CME. The appearance of small transient open magnetic tubes has been found after eruption of the coronal mass. These magnetic tubes seem to be the analogs for transient coronal holes.Taking into account the results of calculations of the field changes in the neighbourhood of the CME occurrence site, we have suggested a possible mechanism governing the spatio-temporal correlation between some flares and CMEs. Also, a possible mechanism has been proposed for field reconfiguration in the corona, leading to loss of the equilibrium of the magnetic configuration and to the subsequent generation of a CME in the region of coronal streamer chains separating coronal holes with same-polarity magnetic field.  相似文献   

16.
Coronal dimmings are often present on both sides of erupting magnetic configurations. It has been suggested that dimmings mark the location of the footpoints of ejected flux ropes and, thus, their magnetic flux can be used as a proxy for the flux involved in the ejection. If so, this quantity can be compared to the flux in the associated interplanetary magnetic cloud to find clues about the origin of the ejected flux rope. In the context of this physical interpretation, we analyze the event, flare, and coronal mass ejection (CME) that occurred in active region 10486 on 28 October 2003. The CME on this day is associated with large-scale dimmings, located on either side of the main flaring region. We combine SOHO/Extreme Ultraviolet Imaging Telescope data and Michelson Doppler Imager magnetic maps to identify and measure the flux in the dimming regions. We model the associated cloud and compute its magnetic flux using in situ observations from the Magnetometer Instrument and the Solar Wind Electron Proton Alpha Monitor aboard the Advance Composition Explorer. We find that the magnetic fluxes of the dimmings and magnetic cloud are incompatible, in contrast to what has been found in previous studies. We conclude that, in certain cases, especially in large-scale events and eruptions that occur in regions that are not isolated from other flux concentrations, the interpretation of dimmings requires a deeper analysis of the global magnetic configuration, since at least a fraction of the dimmed regions is formed by reconnection between the erupting field and the surrounding magnetic structures.  相似文献   

17.
Transequatorial Filament Eruption and Its Link to a Coronal Mass Ejection   总被引:3,自引:0,他引:3  
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament-arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nancay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described example in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.  相似文献   

18.
The spectacular prominence eruption and CME of 31 August 2007 are analyzed stereoscopically using data from NASA??s twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The technique of tie pointing and triangulation (T&T) is used to reconstruct the prominence (or filament when seen on the disk) before and during the eruption. For the first time, a filament barb is reconstructed in three-dimensions, confirming that the barb connects the filament spine to the solar surface. The chirality of the filament system is determined from the barb and magnetogram and confirmed by the skew of the loops of the post-eruptive arcade relative to the polarity reversal boundary below. The T&T analysis shows that the filament rotates as it erupts in the direction expected for a filament system of the given chirality. While the prominence begins to rotate in the slow-rise phase, most of the rotation occurs during the fast-rise phase, after formation of the CME begins. The stereoscopic analysis also allows us to analyze the spatial relationships among various features of the eruption including the pre-eruptive filament, the flare ribbons, the erupting prominence, and the cavity of the coronal mass ejection (CME). We find that erupting prominence strands and the CME have different (non-radial) trajectories; we relate the trajectories to the structure of the coronal magnetic fields. The possible cause of the eruption is also discussed.  相似文献   

19.
We present the first evidence for occurrences of magnetic interactions between a jet, a filament and coronal loops during a complex event, in which two flares sequen-tially occurred at different positions of the same active region and were closely associated with two successive coronal mass ejections (CMEs), respectively. The coronal loops were located outside but nearby the filament channel before the flares. The jet, originating from the first flare during its rise phase, not only hit the filament body but also met one of the ends of the loops. The filament then underwent an inclined eruption followed by the second flare and met the same loop end once more. Both the jet and the filament erup- tion were accompanied by the development of loop disturbances and the appearances of brightenings around the meeting site. In particular, the erupting filament showed clear manifestations of interactions with the loops. After a short holdup, only its portion passed through this site, while the other portion remained at the same place. Following the fila-ment eruption and the loop disappearance, four dimmings were formed and located near their four ends. This is a situation that we define as "quadrupolar dimmings." It appears that the two flares consisted of a sympathetic pair physically linked by the interaction between the jet and the filament, and their sympathy indicated that of the two CMEs.Moreover, it is very likely that the two sympathetic CMEs were simultaneously associ-ated with the disappearing loops and the quadrupole dimmings.  相似文献   

20.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号