首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄铁矿是富有机质沉积的特征矿物。根据TOC/S、TOC/DOP、S/Fe关系以及S TOC Fe多重线性回归分析结果对三水盆地古近系〖HT5”,6”〗土〖KG-*3〗布〖HT5”SS〗心组红岗段黑色页岩中沉积黄铁矿的形成及其控制因素进行了分析。土布心组红岗段黑色页岩的黄铁矿有成岩黄铁矿和同生黄铁矿两种成因组分。红岗段下部(亚段A)有机碳含量普遍较低,底部水体以弱氧化条件为主,硫酸盐还原作用发生于沉积物/水界面以下,黄铁矿为成岩成因,其形成主要受有机质的限制。红岗段中上部(亚段B和C)的沉积条件变化频繁,其有机碳含量变化幅度大。富有机质(TOC>4%)岩层形成于缺氧的底部水体条件下。水体中可含H2S,碎屑铁矿物在埋藏之前即与之在水体中反应形成同生黄铁矿。这一过程不受有机质的限制,而是受活性铁与H2S接触时间的限制。同时,由于大量淡水输入导致硫酸盐浓度的降低,从而对硫化物形成有一定的限制作用。对于低有机质(TOC<4%)样品,黄铁矿由同生和成岩组分组成。其中以成岩黄铁矿为主,其形成过程主要受有机质限制,而同生黄铁矿受铁矿物与H2S接触时间的限制。  相似文献   

2.
Dump groundwaters in the former East-German lignite-mining district are characterized by high amounts of ferrous iron and sulphate. Both the pyrite weathering products endanger the surface water quality when discharged into lakes. Only the precipitation of both contaminants in the subsurface can prevent the further contamination of surface waters. The two-step process of microbial catalyzed sulphate reduction and iron sulphide precipitation is limited by the low availability of natural organic substances as electron donators. Therefore, a new remediation technique is developed based on the injection of a liquid organic electron donator (methanol) into the contaminated aquifer. The saturated aquifer is used as a bioreactor, where iron monosulphides are precipitated in the groundwater-filled pore space. Column experiments were performed under natural pressure and temperature conditions with natural anoxic groundwater and original sediments to test the remediation technology. The test showed that a complete iron removal (4 mmol/l), even under rather acid conditions (pH 3.8), is possible after having established an active sulphate reducer population. The turnover of the added organic substance with sulphate is complete and the amount of the resulting sulphide controls the effluent pH. In addition, intensified microbial activity triggers the turnover of natural organic substances. Also, natural Fe(III) hydroxides react with the sulphide produced. Considering the long natural retention times (decades), artificially enhanced FeS precipitation is spontaneous, although it shows kinetic behaviour in the range of days. In light of the promising results, the development of a field scale application of this technique is considered to be necessary. It will have to focus on the improved precipitation control of the FeS in the subsurface.  相似文献   

3.
《Applied Geochemistry》2001,16(3):363-374
The Nordåsvannet fjord in western Norway is a modern semi-enclosed basin suitable for studying sedimentary cycles as they occur under anoxic bottom conditions. It is characterized by strongly anoxic conditions in the water column and bottom sediments. Diagenetic pyrite formation occurs in the sediments, and syngenetic pyrite is formed in the lower water column. Organic matter burial in the fjord exceeds that of other environments with normal marine or upwelling conditions. This is due to the better preservation of organic matter. Organic matter composition appears to have changed over time with higher fractions of terrigenous organic matter being present in the most recent sediments. This may be a result of increased input of terrigenous organic matter, possibly due to sewage supply to the fjord over the last decades. Organic C and CaCO3 contents of the sediments do not appear to reflect a productivity signal. Calcium carbonate content is influenced by chemogenic calcite formation. Biogenic opal content appears to reflect a productivity signal, but different degrees of dissolution may obscure its clear recognition.  相似文献   

4.
在土壤和沉积物的自然厌氧环境中,铁氧化物可被铁还原菌等微生物异化还原产生Fe(Ⅱ),形成的Fe(Ⅱ)/铁氧化物表面结合铁系统具有还原活性,可使有机污染物还原转化。综述了含卤和含硝基有机污染物的非生物还原转化过程和表面结合铁系统与有机污染物之间的界面反应机理,进而揭示了污染物在环境中的赋存状态和迁移转化规律;重点分析了影响该还原过程的因素,如铁氧化物类型、pH值、Fe(Ⅱ)与铁氧化物接触时间,以及过渡金属、腐殖酸等竞争因子对反应过程的影响。强化自然界中天然的Fe(Ⅱ)/铁氧化物表面结合铁系统在有机污染治理中的作用,在受污染环境修复领域具有广阔的应用前景。 [HT5H]关 键 词:[HT5K]  相似文献   

5.
《Applied Geochemistry》2002,17(7):923-933
The accumulation and storage of trace metals in coastal sediments is an environmental concern. It is, therefore, important to understand better how these metals are bound or released under different redox conditions. This study of Fe and trace metal fixation under continuously anoxic conditions in the bottom sediments and the lower water column of the Nordåsvannet fjord in western Norway contributes further to such understanding. It allows investigation of both an end member redox state and one important mechanism of Fe and trace metal accumulation in sediments, the pyritization of Fe and trace metals. Pyrite formation occurs both in the water column and in the sediments of the Nordåsvannet fjord and favours the fixing of Fe and trace metals in the bottom sediments of the fjord. Thus, these sediments act as a continuous sink for Fe and trace metals. The DOP, and the degrees of trace metal pyritization for Mo, Ni and Cr correlate with organic matter content. While it is generally thought that Fe is the factor limiting pyrite formation in anoxic environments, this study found that degrees of pyritization of Fe (DOP) are clearly below 100%, and the availability of metabolizable organic matter is limiting pyrite formation. This is an important finding, because it indicates that increased supply of organic and mineral matter by higher runoff from land would further enhance the fixation of these metals in the fjord sediments, as would higher organic matter availability from increased productivity due to higher nutrient supply. The metals stored in the bottom sediments could be released into the biogeochemical cycle if redox conditions were to change from anoxic to suboxic or oxic. The fjord would then become a source rather than a sink for these metals.  相似文献   

6.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

7.
Sedimentary phosphorus (P) composition was investigated in Effingham Inlet, a fjord located on the west coast of Vancouver Island in Barkley Sound. Solid-state 31P nuclear magnetic resonance (NMR) spectroscopy was applied to demineralized sediment samples from sites overlain by oxic and anoxic bottom waters. The two sites were similar in terms of key diagenetic parameters, including the mass accumulation rate, integrated sulfate reduction rate, and bulk sediment organic carbon content. In contrast, P benthic fluxes were much higher at the anoxic site. 31P NMR results show that P esters and phosphonates are the major organic P species present at the surface and at depth in sediments at both sites. Polyphosphates were only found in the surface sediment of the site overlain by oxic waters. The varying stability of polyphosphates in microorganisms under different redox conditions may, in part, explain their distribution as well as differences in P flux between the two sites.  相似文献   

8.
黄永建  王成善 《地学前缘》2009,16(5):172-180
铁作为地壳中丰度最高的元素之一,广泛参与到一系列地球化学循环中。现代海洋中的铁主要来源于河流、冰川和风的铁氧化物颗粒和溶解铁的输入。陆源输入的铁氧化物在有机质埋藏、降解的早期成岩作用过程中,发生一系列转化过程而埋藏下来,该过程被称作活性铁循环。氧化 强氧化条件利于沉积物中氧化铁的持续产生或者至少保持不被溶解的状态,从而形成棕色-红色沉积物;还原条件利于沉积物中铁氧化物的溶解,形成菱铁矿、黄铁矿(铁硫化物) 等形式的埋藏,并可能造成溶解铁在海洋内的迁移。Raiswell、Canfield、Poulton等通过对现代典型海洋环境活性铁循环研究,提出了一系列用于判别古海洋氧化 还原条件的活性铁指标体系,并成功地将太古宙以来的古海洋划分成为含铁的大洋、硫化的大洋和氧化的大洋等3个演化阶段。由于活性铁的不同形态对磷具有不同的生物地球化学效应,将造成“氧化条件下磷的优先埋藏、缺氧条件下优先释放的现象”。磷是海洋生产力的限制性元素,铁和磷循环的上述耦合关系将造成“缺氧的大洋生产力越高,富氧的大洋生产力越低”现象的出现。目前已在白垩纪古海洋缺氧 富氧沉积中初步证实了上述反馈关系的存在,但是对活性铁埋藏形式对该特殊沉积的贡献还需要进一步的工作。  相似文献   

9.
Field, petrographic and stable isotopic evidence indicate the former presence of widespread evaporites in the Neoarchaean Campbellrand Subgroup of South Africa. Calcitization of the vanished but once laterally-extensive evaporites was apparently driven by bacterial sulphate reduction of solid sulphate in association with organic diagenesis and pyrite precipitation within platform-wide microbialites and sapropels. This counters current interpretations that much of the calcite was precipitated directly on the seafloor or in primary voids in open marine conditions controlled by regional seawater chemistry. Rather, large-scale microbial mediation of ambient waters across a shallow to emergent platform raised carbonate alkalinity and removed kinetic inhibitors to carbonate formation.The low preservation potential of Precambrian solid sulphate is related in part to bacterial sulphate reduction within the microbially-dominated ecosystems of which cyanobacteria were a major component. Evidence for the former presence of solid sulphate in shallow Neoarchaean seas includes pseudomorphs after selenite, also recorded from the contemporaneous Carawine Dolomite of Australia, together with rock fabrics and textures typical of evaporite dissolution. Importantly, sulphur isotopes of pyrite samples from the Cambellrand carbonates show a wide range of values indicating biogenic fractionation of sulphate, a signature also seen in the Neoarchaean Belingwe Greenstone Belt of Zimbabwe, and the Mt McRae and Jeerinah shales of Western Australia.Mass microbial colonization across extensive Neoarchaean epeiric seas witnessed the microbiogeochemical transformation of the Earth’s hydrosphere, atmosphere and biosphere. The consequences for a reducing ocean would be the progressive oxidation of the major dissolved species in surface seawater, most notably of reduced sulphur and iron. Cyanobacterial photosynthetic oxidation of surface seawater drove formation of aqueous sulphate and permitted the precipitation of extensive evaporites in restricted basins, perhaps beginning the process of ridding the oceans of reduced sulphur. The first dramatic explosion of carbonate precipitation can be related to intense bacterial sulphate reduction in association with anoxic organic diagenesis and pyrite formation within the decaying interiors of microbialites and in sapropels.  相似文献   

10.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

11.
《Chemical Geology》2002,182(2-4):461-472
Models proposed for authigenic pyritization in the literature provide good indicators of the effect of very high concentrations of available iron on decaying organisms; however, the impact of lower concentrations of iron on an actively decaying system is not so well characterised. Gel-stabilised systems are used to model the effect of extremes of iron concentration on the precipitation of pyrite and the process of organic matter preservation. The experiments show the effect of sulphate reduction decay in an environment where iron is limited or dispersed, and in iron-rich environment where diffusion is limited. The formation of discrete sulphide bands in experiments where iron is limited indicates that negative feedback, or Liesegang, reactions play a role in the development of gaps between sites of organic matter preservation and pyrite precipitation, providing a mechanism for the formation of pyrite halos, concretion rims and overgrowths. In iron-rich environments, pyrite formation is confined to the decaying organism, and the Liesegang effect is limited due to the restricted diffusion of dissolved sulphide.  相似文献   

12.
We investigated the phosphorus (P) and iron (Fe) fractionation in four cores with anoxic sediments, deposited during the mid-Cretaceous oceanic anoxic event 2 (∼94 Ma) and the Paleocene-Eocene thermal maximum (∼55 Ma), that were exposed to oxygen after core recovery. Surprisingly, P associated with iron oxyhydroxides (Fe-bound P) was a major P phase in these laminated sediments deposited under euxinic conditions. A significant fraction of total Fe was present as (poorly) crystalline ferric Fe. This fraction increased with increasing storage time of the investigated cores. In carbonate-poor samples, Fe-bound P accounted for up to 99% of total P and its abundance correlated with pyrite contents. In samples with higher CaCO3 contents (>5 wt% in the investigated samples), P was mostly present in authigenic Ca-P minerals, irrespective of pyrite contents. We conclude that the P fractionation in anoxic, carbonate-poor, sediments is strongly affected by pyrite oxidation that occurs when these sediments are exposed to oxygen. Pyrite oxidation produces sulfuric acid and iron oxyhydroxides. The abundance of poorly crystalline Fe oxyhydroxides provides further evidence that these were indeed formed through recent (post-recovery) oxidation rather than in situ tens of millions of years ago. The acid dissolves apatite and the released phosphate is subsequently bound in the freshly formed iron oxyhydroxides. Pyrite oxidation thus leads to a conversion of authigenic Ca-P to Fe-bound P. In more calcareous samples, CaCO3 can act as an effective buffer against acidic dissolution of Ca-P minerals. The results indicate that shielding of sediments from atmospheric oxygen is vital to preserve the in situ P fractionation and to enable a valid reconstruction of marine phosphorus cycling based on sediment records.  相似文献   

13.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

14.
Data on abundance and isotopic composition of porewater and sedimentary sulfur species are reported for relatively uncontaminated and highly contaminated fine-grained anoxic sediments of St. Andrew Bay, Florida. A strong contrast in amount and composition of sedimentary organic matter at the two sites allows a comparative study of the historical effects of increased organic loading on sulfur cycling and sulfur isotopic fractionation. In the contaminated sediments, an increase in organic loading caused increased sedimentary carbon/sulfur ratios and resulted in higher rates of bacterial sulfate reduction, but a lower efficiency of sulfide oxidation. These differences are well reflected in the isotopic composition of dissolved sulfate, sulfide, and sedimentary pyrite. Concentration and isotopic profiles of dissolved sulfate, organic carbon, and total sulfur suggest that the anaerobic decomposition of organic matter is most active in the upper 8cm but proceeds at very slow rates below this depth. The rapid formation of more than 90% of pyrite in the uppermost 2 cm which corresponds to about 3 years of sediment deposition allows the use of pyrite isotopic composition for tracing changing diagenetic conditions. Sediment profiles of the sulfur isotopic composition of pyrite reflect present-day higher rates of bacterial sulfate reduction and lower rates of sulfide oxidation, and record a profound change in the diagenetic cycling of sulfur in the contaminated sediments coincident with urban and industrial development of the St. Andrew Bay area.  相似文献   

15.
The reactive transport modeling of a complicated suite of reactions apparent in the aquifer during the application of N-containing fertilizers is reported. The unconfined sandy aquifer can be subdivided into an oxic zone which contains groundwater with oxygen and nitrate and an anoxic zone characterized by elevated iron and sulfate concentrations in groundwater. Oxygen and nitrate are being reduced by pyrite and organic matter that commonly apparent in the aquifer. The oxidation of pyrite is modeled using the local equilibrium approach, whereas decomposition of organic matter, with the adoption of kinetic approach. The system is buffered by dissolution of aluminum and iron oxides. The modeling process is a two-step procedure. First, the processes are modeled in the one-dimensional (1D) column using PHREEQC code. Subsequently, the calibrated and verified data were copied and used in two-dimensional (2D) PHAST model. Prior to the performance of reactive transport modeling operations with PHAST, a reliable flow model was executed. Finally, predictions are made for the distribution of water chemistry for the year 2008. Model predicts that sulfate derived from the ongoing pyrite oxidation is reduced by the dissolved organic carbon at the higher depth and forms pyrite by the reaction with iron. The results of this study highlight the importance of understanding the interplay between the transport and chemical reactions that occur during the input of nitrate to the aquifer. Reactive transport modeling incorporating the use of a newly developed code PHAST have proved to be a powerful tool for analyzing and quantifying such interactions.  相似文献   

16.
Iodine is characteristically enriched at the surface of hemipelagic and nearshore sediments deposited under oxygenated conditions. In such sediments, bulk I/Corg ratios usually decrease with depth to values which are characteristic of anoxic sediments, reflecting a preferential release of I during early diagenesis. There is some debate as to whether sedimentary I is associated with the iron oxyhydroxide phase or with the organic fraction, and whether the decrease in I/Corg with depth is due to the dissolution of the iron oxyhydroxides or the decomposition of labile organic matter.It is shown that in a surficial hemipelagic sediment sample and in a nearshore sediment core I is mainly associated with the organic fraction and, moreover, that humic substances are involved in the surficial iodine enrichment. Laboratory experiments on the uptake and release of I by and from sedimentary humic substances also suggest a mechanism whereby humic materials reduce iodate at the sediment/water interface to an electrophilic I species which further reacts with the organic matter to produce iodinated organic molecules. During burial, this excess I could be displaced from the organic matrix by nucleophiles such as sulphide ions or thiosulphate, thus providing a possible explanation for the decrease in I/Corg ratio with depth observed in many nearshore and hemipelagic sediments.  相似文献   

17.
The effects of water residence time and anoxic conditions on the mobilization and speciation of As in a calcite- and pyrite-bearing altered rock excavated during a road-tunnel project has been evaluated using batch and column laboratory experiments. Higher infiltration rates (i.e., shorter water residence times) enhanced the leaching of As due to the higher pH values of the effluents and more rapid transport of dissolved As through the columns. The concentration of As in the effluent also increased under anoxic conditions regardless of the water residence time. This enhanced leaching of As under anoxic conditions could be attributed to a significant pH increase and decreased Fe oxyhydroxide/oxide precipitation compared to similar experiments done under ambient conditions. Processes that controlled the evolution of pH and the temporal release mechanisms of As under anoxic conditions were identical to those previously observed under ambient conditions: the dissolution of soluble phases, pyrite oxidation, co-precipitation and/or adsorption/desorption reactions. Speciation of As in the column experiments could partly be attributed to the pH-dependent adsorption of As species onto Fe oxyhydroxide/oxide precipitates. Moreover, apparent equilibrium of the total As and As[III] concentrations was delayed under anoxic conditions in both batch and column experiments.  相似文献   

18.
A multicomponent diagenetic model was developed and applied to reconstruct the conditions under which the most recent sapropel, S1, was deposited in the eastern Mediterranean Sea. Simulations demonstrate that bottom waters must have been anoxic and sulphidic during the formation of S1 and that organic matter deposition was approximately three times higher than at present. Nevertheless, most present day sediment and pore water profiles — with the exception of pyrite, iron oxyhydroxides, iron-bound phosphorus and phosphate — can be reproduced under a wide range of redox conditions during formation of S1 by varying the depositional flux of organic carbon. As a result, paleoredox indicators (e.g., Corg:S ratio, Corg:Porg ratio, trace metals) are needed when assessing the contribution of oxygen-depletion and enhanced primary production to the formation of organic-rich layers in the geological record. Furthermore, simulations show that the organic carbon concentration in sediments is a direct proxy for export production under anoxic bottom waters.The model is also used to examine the post-depositional alteration of the organic-rich layer focussing on nitrogen, phosphorus, and organic carbon dynamics. After sapropel formation, remineralisation is dominated by aerobic respiration at a rate that is inversely proportional to the time since bottom waters became oxic once again. A sensitivity analysis was undertaken to identify the most pertinent parameters in regulating the oxidation of sapropels, demonstrating that variations in sedimentation rate, depositional flux of organic carbon during sapropel formation, bottom water oxygen concentration, and porosity have the largest impact. Simulations reveal that sedimentary nutrient cycling was markedly different during the formation of S1, as well as after reoxygenation of bottom waters. Accumulation of organic nitrogen in sediments doubled during sapropel deposition, representing a significant nitrogen sink. Following reventilation of deep waters, N2 production by denitrification was almost 12 times greater than present day values. Phosphorus cycling also exhibits a strong redox sensitivity. The benthic efflux of phosphate was up to 3.5 times higher during the formation of S1 than at present due to elevated depositional fluxes of organic matter coupled with enhanced remineralisation of organic phosphorus. Reoxygenation of bottom waters leads to a large phosphate pulse to the water column that declines rapidly with time due to rapid oxidation of organic material. The oxidation of pyrite at the redox front forms iron oxyhydroxides that bind phosphorus and, thus, attenuate the benthic phosphate efflux. These results underscore the contrasting effects of oxygen-depletion on sedimentary nitrogen and phosphorus cycling. The simulations also confirm that the current conceptual paradigm of sapropel formation and oxidation is valid and quantitatively coherent.  相似文献   

19.
李哲  李仁伟 《岩石学报》1989,5(1):21-27
东濮盆地四口井的25个沉积岩样品的穆斯堡尔谱学研究结果表明,沉积岩样品中的主要含铁矿物相为黄铁矿、粘土矿物以及一些碳酸盐矿物。沉积岩中黄铁矿铁的相对含量与Pr/Ph和CPI之间存在着负相关关系,表明穆斯堡尔谱学方法所确定的黄铁矿铁的相对含量可以作为沉积岩形成时古环境分析的一项可靠指标。此外,东濮盆地铁白云石主要分布在一定深度范围之内,本文讨论了铁白云石的分布与沉积岩有机质成熟度之间的对应关系。  相似文献   

20.
In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present-day bottom water redox conditions range from fully oxygenated and seasonally hypoxic to almost permanently anoxic and sulfidic. Strong surface enrichments of Fe-oxide bound P are observed at oxic and seasonally hypoxic sites but not in the anoxic basins. Reductive dissolution of Fe-oxides and release of the associated P supports higher sediment-water exchange of PO4 at hypoxic sites (up to ∼800 μmol P m−2 d−1) than in the anoxic basins. This confirms that Fe-bound P in surface sediments in the Baltic acts as a major internal source of P during seasonal hypoxia, as suggested previously from water column studies. Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca-P formation or biogenic Ca-P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased primary productivity. Historical records of bottom water oxygen at two sites (Bornholm, Northern Gotland) show a decline over the past century and are accompanied by a rise in values for typical sediment proxies for anoxia (total sulfur, molybdenum and organic C/P ratios). While sediment reactive P concentrations in anoxic basins are equal to or higher than at oxic sites, burial rates of P at hypoxic and anoxic sites are up to 20 times lower because of lower sedimentation rates. Nevertheless, burial of reactive P in both hypoxic and anoxic areas is significant because of their large surface area and should be accounted for in budgets and models for the Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号