首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geomorphic, oceanographic, terrestrial and anthropogenic attributes of the European coastal zone are described and published data on ecosystem function (primary production and respiration) are reviewed. Four regions are considered: the Baltic Sea, Mediterranean Sea, Black Sea and the European Atlantic coast including the North Sea. The metabolic database (194 papers) suffers from a non-homogeneous geographical coverage with no usable data for the Black Sea which was therefore excluded from this part of our study. Pelagic gross primary production in European open shelves is, by far, the most documented parameter with an estimated mean of 41 mmol C m−2 d−1, the lowest value is reported in the Mediterranean Sea (21 mmol C m−2 d−1) and the highest one in the Atlantic/North Sea area (51 mmol C m−2 d−1). Microphytobenthic primary production, mostly measured in shallow areas, is extrapolated to the entire 0–200 m depth range. Its contribution to total primary production is low in all regions (mean: 1.5 mmol C m−2 d−1). Although macrophyte beds are very productive, a regional production estimate is not provided in this study because their geographical distribution along the European coastline remains unknown. Measurements of pelagic community respiration are clearly too sparse, especially below the euphotic zone, to yield an accurate picture of the fate of organic matter produced in the water column. With a mean value of 17 mmol C m−2 d−1, benthic community respiration consumes approximately 40% of the pelagic organic matter production. Estuaries generally exhibit high metabolic rates and a large range of variation in all parameters, except microphytobenthic primary production. Finally, the problem of eutrophication in Europe is discussed and the metabolic data obtained in the framework of the Land–Ocean Interactions in the Coastal Zone (LOICZ) project are compared with available direct measurements of net ecosystem production.  相似文献   

2.
We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during the summers of 2003 and 2004 on 16 dates distributed along depth and salinity gradients. Dissolved oxygen fluxes were measured on replicate sediment and water column samples exposed to a gradient of photosynthetically active radiation. Sediment inorganic nutrient (NH4+, NO3, PO43−) fluxes were measured. The response of dissolved oxygen fluxes to variation in light was fit to a photosynthesis–irradiance model and the parameter estimates were used to calculate daily integrated production in the water column and the benthos. The results suggest that shoal environments supported substantial benthic productivity, averaging 13.6 ± 4.7 mmol O2 m−2 d−1, whereas channel environments supported low benthic productivity, averaging 0.5 ± 0.3 mmol O2 m−2 d−1SE). Estimates of baywide microphytobenthic productivity ranged from 8.1 to 16.5 mmol O2 m−2 d−1, comprising about 16–32% of total system productivity. Benthic and water column dark respiration averaged 15.2 ± 3.2 and 33.6 ± 3.7 mmol O2 m−2 d−1, respectively Inorganic nutrient fluxes were generally low compared to relevant estuarine literature values, and responded minimally to light exposure. Across all stations, nutrient fluxes from sediments to the water column averaged 1.11 ± 0.98 mmol m−2 d−1 for NH4+, 0.58 ± 1.08 mmol m−2 d−1 for NO3, 0.01 ± 0.09 mmol m−2 d−1 for PO43−. The results of this study illustrate how light reaching the sediments is an important modulator of benthic nutrient and oxygen dynamics in shallow estuarine systems.  相似文献   

3.
Upper-ocean fluxes of particulate organic carbon (POC) and biogenic silica (bSi) are calculated from four US JGOFS cruises along 170°W using a thorium-234 based approach. Both POC and bSi fluxes exhibit large variability vs. latitude during the seasonal progression of diatom dominated blooms. POC fluxes at 100 m of up to 50 mmol C m−2 d−1 are found late in the bloom, and farthest south near the Ross Sea Gyre. Biogenic Si fluxes also peak late in the bloom as high as 15 mmol Si m−2 d−1, but this flux peak occurs at a different latitude, just south of the Antarctic Polar Front (APF), which is centered around 60°S along this cruise track. The ratios of both POC and bSi export relative to their production rates are large, suggesting an efficient biological pump at these latitudes. The highest relative bSi/POC flux ratios at 100 m are found just south of the APF, coincident with a bSi/POC flux peak seen in 1000 m traps during this same program by Deep-Sea Research II (Honjo et al., Deep-Sea Research II 47, 3521–3548). These data suggest that efficient export at these latitudes can support the high accumulation rates of bSi found in the sediments under and south of the APF, despite the generally low biomass and productivity levels in this region.  相似文献   

4.
Determination of the actual mercury concentration in Mediterranean basin seawater was achieved by means of an instrument based on fluorescence spectrometry developed for this purpose, during a field study aboard the oceanographic ship “L.F. Marsili”, between August 1980 and May 1982.Dissolved ·total’ and ·reactive’ mercury and mercury associated with particulate matter were determined on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Concentrations in the range 1.4–19.7 ng l−1 for ·total dissolved mercury’, 0.5–5.9 ng l−1 for ·reactive dissolved mercury’ and 0.3–8.0 ng l−1 for mercury associated with the particulate matter, were measured on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Even if the mean value of the total mercury concentration (dissolved + particulate) was found to be about twice as high as those observed for the oceans, the difference does not seem to be as high as predicted by the model proposed by Buffoni and co-workers to explain the large difference of mercury levels between tunas caught, respectively, in the Mediterranean and in the Oceans.  相似文献   

5.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

6.
Spring profiles of microbial production derived from the dark incorporation of tritiated leucine and tritiated thymidine in the northwest Mediterranean show an exponential decline with depth. Assuming this to represent a steady-state balance between microbial respiration and the downward flux of carbon, the downward flux is estimated as (1−/)p/b, where p is the microbial production, their gross growth efficiency and b the coefficient of exponential decline with depth. Summer profiles, ranging over about 3° of latitude and 4° of longitude, were well fitted by a two-component exponential decline, suggesting two distinct microbial substrates. Values of b for the more rapidly declining component varied between 0.01 and 0.06 m−1 according to location. In the case of the slower component, b was estimated as 0.002 m−1, and did not vary significantly over the region. Estimated fluxes of carbon at the surface are 123–335 mg m−2 d−1 for the fast and 95 mg m−2 d−1 for the slow component. Below about 200 m, carbon flux is dominated by the slow component. Flux estimates are compatible with flux estimates from sediment traps in the same region. The observed changes between the spring and summer profiles, combined with the horizontal homogeneity of the summer profiles below 200 m, are consistent with a downward transport of about 5–10 m d–1, implying a significant dispersive component to the observed fluxes.  相似文献   

7.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

8.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

9.
The water under the main thermocline in the Japan Sea is a single water mass referred to as the Japan Sea Proper Water. It can be defined as having temperature below 2.0°C, salinity above 34.00%, and dissolved oxygen below 7.0 ml 1−1. In the north most of the water above the potential temperature 0.1°C depth (about 800–1000 m) is a mode water, with σθ of 27.32 to 27.34 kg m−3. North of 40°N it has high oxygen (more than 6.00 ml 1−1) with a distinct discontinuity (oxygen-cline) at the bottom of the mode water. The most probable region for the formation of the water is the area north of 41°N between 132° and 134°E. The deeper water probably is formed in the norther area of 43°N, and directly fills the main part of the Japan Basin north of 41°N and east of 134°E.  相似文献   

10.
Seabed distributions of 234Th excess (Thxs) were determined in the upper centimetres of 38 sediment cores from the north-western Iberian Margin, sampled from 41–44°N and from 9–12°E during five OMEX II cruises. Three main areas, a northern, and at 42°38 and 42°N, were investigated during representative seasons (winter, spring and summer). Low 234Thxs activities in summer 1998 (18–252 Bq per kg) were similar to those measured in summer 1997. In winter 234Th also showed moderate excess. The highest values were observed in spring with surface 234Thxs values up to 402 Bq kg−1. Maximum penetration depths of 234Thxs ranged from a few mm to 3 cm. 234Thxs activities always showed a smooth decrease with depth, without any evidence of non-local mixing. Thus particle mixing on a short time scale can be described as an eddy diffusive process, and bioturbation rates, calculated on this basis, range from 0.02 to 3.07 cm2 per year. Data (activities, inventories, bioturbation rates) are discussed in order to relate the observed surface and down-core variations to spatial and seasonal trends. Using 234Thxs data in sediment as a substitute for sediment trap estimates, particle fluxes were calculated from 234Thxs inventories. The range of 234Th-derived particle fluxes for the north-western Iberian Margin is 16–1418 mg.m−2.d−1. Mean values indicate a gradual decrease of mass fluxes from the shelf to the open ocean. On a 100-day scale, the northern area (43–44°N) represents a low sedimentation regime. Further south, around 42°–43°N, particle inputs are more important. On the middle slope, around 1000 to 2000 m depth, high inventories and bioturbation rates indicate enhanced, and probably organic-rich, particle fluxes to the seafloor, particularly in spring.  相似文献   

11.
Particle export from the upper waters of the oligotrophic ocean may play a crucial role in the global carbon cycle. Mesoscale eddies have been hypothesized to inject new nutrients into oligotrophic surface waters, thereby increasing new production and particle export in otherwise nutrient deficient regimes. The E-Flux Program was a large multidisciplinary project designed to investigate the physical, biological and biogeochemical characteristics of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. There, we investigated particle dynamics using 210Pb–210Po disequilibrium. Seawater samples for 210Pb and 210Po were collected both within (IN) and outside (OUT) of two cyclones, Noah and Opal, at different stages of their evolution as well as from the eddy generation region. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) export fluxes were determined using water-column PC, PN, and bSiO2 inventories and the residence times of 210Po. PC and PN fluxes at 150 m ranged from 1.58±0.10 to 1.71±0.16 mmol C m−2 d−1 and 0.22±0.02 to 0.30±0.02 mmol N m−2 d−1 within Cyclones Opal and Noah. PC and PN fluxes at OUT stations sampled during both cruises were of similar magnitudes, 1.69±0.16 to 1.67±0.16 mmol C m−2 d−1 and 0.30±0.03 to 0.26±0.03 mmol N m−2 d−1. The bSiO2 fluxes within Cyclone Opal were 0.157±0.010 mmol Si m−2 d−1 versus 0.025±0.002 mmol Si m−2 d−1 at OUT stations. These results of minimal PC and PN export, but significant eddy-induced bSiO2 fluxes, agree very well with other studies that used a variety of direct and indirect methods. Thus, our results suggest that using elemental inventories and residence times of 210Po is another independent and robust method for determining particle export and should be investigated more fully.  相似文献   

12.
《Marine Chemistry》2001,75(3):229-248
Dissolved and particulate mercury and methylmercury concentrations were determined in the Southern Bight of the North Sea and the Scheldt estuary in the period 1991–1999. Mercury and methylmercury concentrations are higher before 1995 than after 1995, especially in the fluvial part.The North Sea: In the offshore stations, dissolved Hg concentrations are generally higher in winter than in summer while the reverse is true for particulate Hg KD values (KD=the concentration of particulate Hg (HgP in pmol kg−1) divided by the concentration of dissolved Hg (HgD in pmol l−1)) range from 100,000 to 1000,000 l kg−1. Dissolved methylmercury concentrations vary from 0.05 to 0.25 pmol l−1 in summer and from d.l. to 0.23 pmol l−1 in winter and particulate methylmercury concentrations from 1.8 to 36 pmol g−1 in summer and from 0.9 to 21 pmol g−1 in winter. The KD ranges from 9,000 to 219,000 l kg−1.The Scheldt estuary: In winter, dissolved Hg concentrations are elevated in the upper estuary, decrease exponentially in the low salinity range followed by a very slow decrease towards the mouth. In summer, they are low in the fluvial part, increase in the low salinity range or in the mid-estuary and sometimes show an increase in the lower estuary. Particulate Hg concentrations do not show any seasonal trend.Dissolved MMHg concentrations are much lower in winter, when maximum concentrations are found in the upper estuary, than in summer. In summer, the MMHg concentrations are low at low salinity, they show a first increase in the salinity range from 3 to 12, a decrease in the mid-estuary and a second increase in the lower estuary.The highest particulate MMHg concentrations are found in the upper estuary, while in the lower estuary generally lower and more constant values are observed. The ratio of dissolved MMHg to dissolved Hg (cruise averages between 1.3% and 20%), is higher than the ratio of particulate MMHg to particulate Hg (cruise averages of 0.27–0.90%). The KD values for MMHg are lower in the summer (30,000–65,000) than in autumn and winter (77,000–114,000).The Scheldt river: In the fluvial part of the Scheldt, dissolved increases in the most upstream stations, while particulate Hg shows no particular pattern. Dissolved MMHg ranges from 0.1 to 0.39 pmol l−1 and particulate MMHg from 3.1 to 43.5 pmol g−1. The MMHg concentrations are comparable to those found in the estuary and no seasonal variations could be observed.  相似文献   

13.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

14.
An array of five bottom-tethered moorings with 19 PARFLUX time-series sediment trap at three depths (1 and 2 km below the surface, and 0.7 km above the sea-floor) was deployed in the western Pacific sector of the Southern Ocean, along 170°W. The five stations were selected to sample settling particles in the main hydrological zones of the Southern Ocean. The sampling period spanned 425 days (November 28, 1996–January 23, 1998) and was divided into 13 or 21 synchronized time intervals. A total of 174 sequential samples were recovered and analyzed to estimate fluxes of total mass (TMF), organic carbon, carbonate, biogenic silica, and lithogenic particles. The fluxes of biogenic material were higher than anticipated, challenging the notion that the Southern Ocean is a low-productivity region. Organic carbon fluxes at 1 km depth within the Polar Frontal Zone and the Antarctic Zone were relatively uniform (1.7–2.3 g m−2 yr−1), and about twice the estimated ocean-wide average (ca. 1 g m−2 yr−1). Carbonate fluxes were also high and uniform between the Subantarctic Front and ca. 64°S (11–13 g m−2 yr−1). A large fraction of the carbonate flux in the Antarctic Zone was due to the presence of pteropod shells. Coccoliths were found only to the north of the Polar Front, and calcium carbonate became the dominant phase in the Subantarctic Zone. In contrast, carbonate particles were nearly absent near 64°S. Latitudinal variations in biogenic silica fluxes were substantial. The large opal flux (57 g m−2 yr−1) measured in the Antarctic Zone suggests that opal productivity in this region has been previously underestimated and helps to explain the high sedimentary opal accumulation often found south of the Polar Front. Unlike biogenic material, fluxes of lithogenic particles were among the lowest measured in the open-ocean (0.12–0.05 g m−2 yr−1), reflecting a very low dust input.  相似文献   

15.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

16.
Measurements of bromoform (CHBr3), diiodomethane (CH2I2), chloroiodomethane (CH2ICl) and bromoiodomethane (CH2IBr) were made in the water column (5–100 m depth) of the Southern Ocean within 0–40 km of the Antarctic sea ice during the ANTXX1/2 transect of the German R/V Polarstern, at five locations between 70–72°S and 9–11°W in the Antarctic spring/summer of 2003–2004. Some of the profiles exhibited a very pronounced layer of surface sea-ice meltwater, as evidenced by salinity minima and temperature maxima, along with surface maxima in concentrations of CHBr3, CH2I2, CH2ICl and CH2IBr. These results are consistent with in situ surface halocarbon production by ice algae liberated from the sea ice, although production within the sea ice followed by transport cannot be entirely ruled out. Additional sub-surface maxima in halocarbons occurred between 20 and 80 m. At a station further from shore and not affected by surface sea-ice meltwater, surface concentrations of CH2I2 were decreased whereas CH2ICl concentrations were increased compared to the stations influenced by meltwater, consistent with photochemical conversion of CH2I2 to CH2ICl, perhaps during upward mixing from a layer at  70 m enhanced in iodocarbons. Mean surface (5–10 m) water concentrations of halocarbons in these coastal Antarctic waters were 57 pmol l− 1 CHBr3 (range 44–78 pmol l− 1), 4.2 pmol l− 1 CH2I2 (range 1.7–8.2 pmol l− 1), 0.8 pmol l− 1 CH2IBr (range 0.2–1.4 pmol l− 1), and 0.7 pmol l− 1 CH2ICl (range 0.2–2.4 pmol l− 1). Concurrent measurements in air suggested a sea-air flux of bromoform near the Antarctic coast of between 1 and 100 (mean 32.3, median 10.4) nmol m− 2 day− 1 and saturation anomalies of 557–1082% (mean 783%, median 733%), similar in magnitude to global shelf values. In surface samples affected by meltwater, CH2I2 fluxes ranged from 0.02 to 6.1 nmol m− 2 day− 1, with mean and median values of 1.9 and 1.1 nmol m− 2 day− 1, respectively.  相似文献   

17.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

18.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

19.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

20.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号