首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we investigate the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of modified Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of modified Chaplygin gas is completely consistent with the notion of an accelerated expansion in the late universe. Finally, it has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results.  相似文献   

2.
Motivated by some previous works of Rudra et al. we set to explore the background dynamics when dark energy in the form of New Variable Modified Chaplygin gas is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. The main idea is to find out the efficiency of New variable modified Chaplygin gas to play the role of DE. As a result we resort to the technique of comparison with standard dark energy models. Here the RSII brane model have been considered as the gravity theory. An interacting model is considered in order to search for a possible solution of the cosmic coincidence problem. A dynamical system analysis is performed because of the high complexity of the system. The statefinder parameters are also calculated to classify the dark energy model. Graphs and phase diagrams are drawn to study the variations of these parameters and get an insight into the effectiveness of the dark energy model. It is also seen that the background dynamics of New Variable Modified Chaplygin gas is consistent with the late cosmic acceleration. After performing an extensive mathematical analysis, we are able to constrain the parameters of new variable modified Chaplygin gas as m<n to produce the best possible results. Future singularities are studied and it is found that the model has a tendency to result in such singularities unlike the case of generalized cosmic Chaplygin gas. Our investigation leads us to the fact that New Variable Modified Chaplygin gas is not as effective as other Chaplygin gas models to play the role of dark energy.  相似文献   

3.
We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by loop quantum cosmology. We consider dark energy of the form modified Chaplygin gas. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. It henceforth resolves the famous cosmic coincidence problem in modern cosmology. The statefinder parameters are also calculated to classify this dark energy model.  相似文献   

4.
In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.  相似文献   

5.
The paper deals with a spatially homogeneous and anisotropic Bianchi type-I universe filled with two minimally interacting fluids; matter and holographic dark energy components. The nature of the holographic dark energy for Bianchi type-I space time is discussed. An exact solution to Einstein’s field equations in Bianchi type-I line element is obtained using the assumption of linearly varying deceleration parameter. Under the suitable condition, it is observed that the anisotropy parameter of the universe approaches to zero for large cosmic time and the coincidence parameter increases with increasing time. We established a correspondence between the holographic dark energy models with the generalised Chaplygin gas dark energy model. We also reconstructed the potential and dynamics of the scalar field which describes the Chaplygin cosmology. Solution of the field equations shows that a big rip type future singularity will occur for this model. It has been observed that the solutions are compatible with the results of recent observations.  相似文献   

6.
In this letter, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology.  相似文献   

7.
In this paper we consider a correspondence between the holographic dark energy density and interacting generalized cosmic Chaplygin gas energy density in flat FRW universe. Then, we reconstruct the potential of the scalar field which describe the generalized cosmic Chaplygin cosmology. In the special case we obtain time-dependent energy density and study cosmological parameters. We find stability condition of this model which is depend on cosmic parameter.  相似文献   

8.
In this work, we have considered the DBI-essence dark energy model in FRW Universe. We have found the exact solutions of potential, warped brane tension and DBI scalar field. We also calculate the statefinder parameters for our model that make it distinguishable among numerous dark energy models. Moreover, we establish correspondence between DBI-essence and modified Chaplygin gas (MCG) and hence reconstruct the potential and warped brane tension. By this reconstruction, we observe that DBI scalar field and potential increase and warped brane tension decreases during evolution of the Universe. Finally, we investigate the validity of the generalized second law (GSL) of thermodynamics in the presence of DBI-essence and modified Chaplygin gas. It is observed that the GSL breaks down for DBI-essence model but GSL always satisfied for MCG model.  相似文献   

9.
The dominance of dark energy in the universe has necessitated the introduction of a repulsive gravity source to make q0 negative. The models for dark energy range from a simple Λ term to quintessence, Chaplygin gas, etc. We look at the possibility of how change of behaviour of missing energy density, from DM to DE, may be determined by the change in the equation of state of a background fluid instead of a form of potential. The question of cosmic acceleration can be discussed within the framework of theories which do not necessarily include scalar fields.  相似文献   

10.
We investigate the validity of the generalized second law of gravitational thermodynamics in a non-flat FRW universe containing the interacting generalized Chaplygin gas with the baryonic matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the interacting generalized Chaplygin gas as a unified candidate for dark matter and dark energy, the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the equation of state of the interacting generalized Chaplygin gas model.  相似文献   

11.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

12.
In this paper, we study a cosmological model with the sign-changeable interaction between variable generalized Chaplygin gas (VGCG) and dark matter. The dynamical analysis indicates that there exists a stable scaling attractor, which can help to alleviate the coincidence problem. Furthermore, when the parameters of the model take some fixed values, the attractor corresponds to the phase w=?0.939 and the equation of state of VGCG approaches it from either w>?1 or w<?1 depending on the choice of its initial cosmic density parameter and the ratio of pressure to critical energy density. So, the phantom divide can be crossed. We find the interaction term Q can change its sign from Q<0 to Q>0 as the universe expands, which is different from the usual interaction. Also, we place constraints on the parameters from the point of view of dynamics.  相似文献   

13.
In this paper, we have considered a model of our universe containing five components as its constituents. Then, we have done here the statefinder diagnostics for this model. This model can successfully explain the accelerated expansion of the universe given that it satisfies a certain condition. Here we have considered the modified Chaplygin gas as the dynamically changing part of the dark energy component of our universe. Chaplygin gas provides early deceleration and late time acceleration of the universe. The graphical representation of statefinder parameters shows that the total evolution of the universe starts from radiation era to phantom model.  相似文献   

14.
In the present work we assume that the universe is dominated with a two component mixture which do not evolve separately but interact non-gravitationally with one another. we consider the issue of the tachyon as a source of the dark energy and modified Chaplygin gas as background fluid. So we study the interacting between tachyon field and modified Chaplygin gas in different forms of interactions term Q in both flat and non-flat FRW universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology. Also we find a equivalence potential for MCG in this model. Next we study two dark components respect to redshift and we find the conditions that are required for the stability of this model.  相似文献   

15.
In this letter, we have considered a flat FRW universe. Instead of considering only one candidate for the dark energy, we have considered the interaction between phantom field and modified Chaplygin gas. It has been shown that the potential of the phantom field increases from a lower value with evolution of the universe. It has been observed that the field has an increasing tendency and the potential has also an increasing tendency with passage of cosmic time. In the evolution of the universe the crossing of w=−1 has been realized by this interacting model.  相似文献   

16.
We discuss how different cosmological models of the Universe affect the probability that a background source has multiple images related by an angular distance, i.e., the optical depth of gravitational lensing. We examine some cosmological models for different values of the density parameter Ω i : (i) the cold dark matter model, (ii) the ΛCDM model, (iii) the Bose-Einstein condensate dark matter model, (iv) the Chaplygin gas model, (v) the viscous fluid cosmological model and (vi) the holographic dark energy model by using the singular isothermal sphere (SIS) model for the halos of dark matter. We note that the dependence of the energy-matter content of the universe profoundly modifies the frequency of multiple quasar images.  相似文献   

17.
A proposal to study the original and new agegraphic dark energy in DGP braneworld cosmology is presented in this work. To verify our model with the observational data, the model is constrained by a variety of independent measurements such as Hubble parameter, cosmic microwave background anisotropies, and baryon acoustic oscillation peaks. The best fitting procedure shows the effectiveness of agegraphic parameter n in distinguishing between the original and new agegraphic dark energy scenarios and subsequent cosmological findings. In particular, the result shows that in both scenarios, our universe enters an agegraphic dark energy dominated phase.  相似文献   

18.
In a flat Friedmann–Lemaitre–Robertson–Walker background, a scheme of dark matter–dark energy interaction is studied considering a holographic Ricci-like model for the dark energy. Without giving a priori some specific model for the interaction function, we show that this function can experience a change of sign during the cosmic evolution. The parameters involved in the holographic model are adjusted with Supernova data and we obtained results compatible with the observable universe.  相似文献   

19.
The fluctuations of the cosmic microwave background (CMB) are investigated for a hyperbolic universe with finite volume. Four-component models with radiation, matter, vacuum energy and an extra spatially constant dark energy X -component are considered. The general solution of the Friedmann equation for the cosmic scalefactor a ( η ) is given for the four-component models in terms of the Weierstrass ℘-function. The lower parts of the angular power spectra C l of the CMB anisotropy are computed for nearly flat models with Ωtot≤0.95. It is shown that the particular compact fundamental cell that is considered in this paper leads to a suppression in C l for l ≲10 and Ωtot≲0.9.  相似文献   

20.
The history of cosmic ray studies can be traced back to the 1910s when Hess and other scientists first discovered them. Cosmic rays are very important laboratories of particle physics, and have led to many important discoveries of fundamental particles, such as the positrons, muons, pions, and a series of strange particles. Cosmic rays are nowadays the key probes of the extremely high-energy physics and dark matter particles. A brief review about the history and recent progresses of direct observations of cosmic rays is presented. In recent years, the new space-borne experiments such as PAMELA and AMS-02, as well as a few of balloon-borne experiments, have measured the energy spectra of cosmic rays very precisely, and revealed several new features/anomalies. Remarkable excesses of positron fraction in the total electron plus positron fluxes have been observed, which may be caused by the annihilation/decay of dark matter particles or by astrophysical pulsars. The cosmic ray antiprotons, which are expected to have the same secondary origin as that of positrons, do not show significant excesses compared with the background prediction. This result also constrains the modeling of the positron excesses. In addition, the spectral hardening above several hundred GeV of cosmic ray nuclei has been revealed. These results have important and interesting implications on our understandings of the origin, acceleration, and propagation of cosmic rays. In particular, China has launched the Dark Matter Particle Explorer (DAMPE) to indirectly search for the dark matter and explore the high-energy universe in the TeV window. Most recently, the DAMPE collaborators reported the new measurements of the cosmic ray electron plus positron fluxes up to about 5 TeV with a very high precision. The DAMPE data revealed clearly a deflection around 0.9 TeV in the electron energy spectrum. Possible fine structures of the electron plus positron spectra can be critically addressed with the accumulation of data in the coming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号