首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daily mean air temperatures from 81 meteorological stations in Northeast China were analyzed for the spatiotemporal change of the climatic growing season during the period 1960–2009. Our results showed that latitude strongly influenced the spatial patterns of the mean start (GSS), end (GSE), and length (GSL) of the growing season. For the area studied, a significant increasing trend in GSL during 1960–2009 was detected at a significance level of 0.01, especially after the early 1980s. The area-average GSL has extended 13.3 days during the last 50 years, mainly due to the advanced GSS evident in the spring (7.9 days). The variations of GSS and GSE were closely correlated with the monthly mean temperature (T mean) of April and October, respectively, while GSL was closely related to the monthly minimum temperatures (T min) of spring (March to April) and autumn (September to October). The distributions of the trends in growing season parameters (GSS, GSE, and GSL) showed great spatial variability over Northeast China. Significant relationships between altitude and the trend rates of the GSS and GSL were detected, while geographic parameters had little direct effect on the change in GSE. This extended growing season may provide favorable conditions for agriculture and forest, and improve their potential production.  相似文献   

2.
Long term (100 yr) trends of 17 selected annual climatic parameters were studied for 5 locations in Canada. Simple linear correlation coefficients (r) were computed for each variable with time. Temporal variations were not uniform over space, as might be expected over a large continent. Some variables differed significantly with time, while others did not. Forage aridity indices (FAI), or seasonal forage water deficits, had significant negativer values at Agassiz and Ottawa, indicating decreasing aridity over time, but no such trends were evident at the other 3 locations. Stations in western Canada were characterized byr values (mostly significant atP = 0.01) which indicated trends to earlier last spring frost (SF), later growing season end (GSE), later first fall frosts (FF) and increased frost-free period (FFP), growing degree-days (GDD) and Corn Heat Units (CHU). Stations in eastern Canada did not exhibit the same warming trends. No warming trends were observed in January mean temperature (JAN).Five-year moving averages and standard deviations were calculated and plotted forFAI, FF, GDD andGSL (growing season length). The climatic attributes were extremely variable, making detection of warming or cooling trends difficult. TheFAI for the last 30 yr or more at Agassiz and for the last 20 yr at Ottawa was well below the 100 yr normal. At Indian Head,FAI values were high during the 1930's and again around 1960, reflecting the drought conditions which occurred at those times. The other 3 variables showed a tendency to slightly increasing values over the past 50 yr at Agassiz, Indian Head, Brandon and Ottawa. Little, if any, systematic change in these elements was evident at Charlottetown. Standard deviations (S d) fluctuated widely at all locations, with generally little evidence to suggest that the climate has become more or less variable. Cumulative frequency distribution for the total period and the first 70 yr were compared to the last 30 yr. There was an increased frequency of lowerFAI values at 2 locations for the 30-yr period.GDD increased significantly at lower probabilities at Indian Head. Differences in frequency distributions were generally slight for all other variables at the 5 locations.  相似文献   

3.
The CO2 concentrations and fluxes over an urban forest site (Namsan) and an urban residential region (Boramae) in Seoul, Korea, during the non-growing season (2–4 March 2011), the growing season (10–12 June 2011), and the late-growing season (22–24 September 2011) were analyzed. The CO2 concentrations of two sites showed nearly the same diurnal variation, with a maximum value occurring during the night and a minimum value occurring during daytime, as well as the same seasonal variation, with a maximum value during the non-growing season (early spring) and a minimum value during the growing season (summer). The CO2 flux over the urban forest did not show any typical diurnal variation during the non-growing season, but did show diurnal variation with a small positive value during the night and a large negative value during daytime in the growing and late-growing seasons due to photosynthesis in the urban forest. The CO2 flux over the urban residential region showed a positive daily mean value for all periods, with large values during the non-growing season and small values during the growing season, and it also showed diurnal variation with two maxima at 0600–1000 LST and 1800–2400 LST, and two minima at 0300-0600 LST and 1100-1500 LST, and was strongly correlated with the use of liquefied natural gas for cooking and heating by surrounding houses.  相似文献   

4.
Long-term data from diffuse and global irradiances were used to calculate direct beam irradiance which was used to determine three atmospheric turbidity coefficients (Linke T L , Ångström β and Unsworth–Monteith δ a ) at seven sites in Egypt in the period from 1981 to 2000. Seven study sites (Barrani, Matruh, Arish, Cairo, Asyut, Aswan and Kharga) have been divided into three categories: Mediterranean climate (MC), desert Nile climate (DNC) and urban climate (UC, Cairo). The indirect method (i.e., global irradiance minus diffuse irradiance) used here allows to estimate the turbidity coefficients with an RMSE% ≤20 % (for β, δ a and T L ) and ~30 % (for β) if compared with those estimated by direct beam irradiance and sunphotometeric data, respectively. Monthly averages of T L , β and δ a show seasonal variations with mainly maxima in spring at all stations, due to Khamsin depressions coming from Sahara. Secondary maxima is observed in summer and autumn at DNC and MC (Barrani and Arish) stations in summer due to dust haze which prevails during that season and at UC (Cairo) in autumn, due to the northern extension of the Sudan monsoon trough, which is accompanied by small-scale depressions with dust particles. The mean annual values of β, δ a , and T L (0.216, 0.314, and 4.6, respectively) are larger in Cairo than at MC stations (0.146, 0.216, and 3.8, respectively) and DNC stations (0.153, 0.227, and 3.8, respectively). Both El-Chichon and Mt. Pinatubo eruptions were examined for all records data at MC, UC and DNC stations. The overburden caused by Mt. Pinatubo’s eruption was larger than El-Chichon’s eruption and overburden for β, and T L at DNC stations (0.06, and 0.58 units, respectively) was more pronounced than that at MC (0.02, and 0.26, respectively) and UC (0.05 and 0.52 units, respectively) stations. The annual variations in wind speed and turbidity parameters show high values for both low and high wind speed at all stations. The wind directions have a clear effect on atmospheric turbidity, and consequently, largest turbidities occur when the wind carries aerosols from the main particle sources, such as industrial particle sources around Cairo or to some extent from the Sahara surrounding all study stations.  相似文献   

5.
A number of studies have reported an extension of the thermal growing season in response to the warming climate during recent decades. However, the magnitude of extension depends heavily on the threshold temperature used: for a given area, a small change in the threshold temperature results in significant differences in the calculated thermal growing season. Here, we specified the threshold temperature for determining the thermal growing season of local vegetation across 326 meteorological stations in temperate China by using vegetation phenology based on satellite imagery. We examined changes in the start, end, and length of the thermal growing season from 1960 to 2009. The threshold temperatures for determining the start and end increased strongly with increasing mean annual temperature. Averaged across temperate China, the start of the thermal growing season advanced by 8.4?days and the end was delayed by 5.7?days, resulting in a 14.1-day extension from 1960 to 2009. The thermal growing season was intensively prolonged (by 0.59?day/year) since the mid-1980s owing to accelerated warming during this period. This extension was similar to that determined by a spatially fixed threshold temperature of 5?°C, but the spatial patterns differed, owing to differences in the threshold temperature and to intra-annual heterogeneity in climate warming. This study highlights the importance of specifying the temperature threshold for local vegetation when assessing the influences of climate change on thermal growing season, and provides a method for determining the threshold temperature from satellite-derived vegetation phenology.  相似文献   

6.
In this paper, spatiotemporal variability of drought in Xilingol grassland during pasture growing season (from April to September) was investigated, using 52 years (1961–2012) of precipitation data recorded at 14 rain gauge stations in the study area. The Standardized Precipitation Index was used to compute the severity of drought. The Mann-Kendall test, the linear trend, and the sequential Mann-Kendall test were applied to standardized precipitation index (SPI) time series. The results indicate that drought has become increasingly serious on the region scale during pasture growing season, and the rate of SPI decreases ranged from ?0.112 to ?0.013 per decade. As for the MK test, most of the stations, the Z value range is from ?1.081 to ?0.005 and Kendall’s τ varies from ?0.104 to ?0.024. Meanwhile, drought is increased obviously from the northwest to the southeast region. Meanwhile, the occurrence probability of each severity class, times for reaching different drought class from any drought severity state, and residence times in each drought class have been obtained with Markov chain. Furthermore, the drought severities during pasture growing season in 2013–2016 are predicted depending on the weighted Markov chain. The results may provide a scientific basis for preventing and mitigating drought disaster.  相似文献   

7.
Mountain ecosystems have been projected to experience faster rates of warming than surrounding lowlands. These changes in climatic conditions could have significant impacts on high-altitude Andean environments, affecting the quality and magnitude of their economic and environmental services. Even though long-term data in these regions are limited, it is important to identify any discernible long-term trends in local climatic conditions. Time series of several variables were analyzed to detect statistically significant long-term linear trends that occurred over recent years in a páramo ecosystem of the Colombian Central Andes. Records included cloud characteristics, sunshine, rainfall, minimum and maximum temperatures, diurnal temperature range, and relative humidity. Conditions of atmospheric stability were also explored. Total sunshine exhibited decreasing trends ranging from ?3.7 to ?8.5% per decade at altitudes around the pluviometric optimum. The strongest changes in sunshine occurred during the December-January-February season. Mean relative humidity observed at altitudes around and below this threshold showed increasing trends of +0.6 to +0.7% per decade. Annual rainfall and mean relative humidity above the optimum showed decreasing trends ranging from ?7 to ?11% per decade and from ?1.5 to ?3.6% per decade, respectively. Minimum temperatures on the coldest days and maximum temperatures on the warmest days exhibited increasing trends at all altitudes ranging from +0.1 to +0.6, and from +0.2 to +1.1°C per decade, respectively. Increases in minimum and maximum temperatures at higher altitudes were significantly greater than those observed in average at lower altitudes. The strongest changes in minimum temperatures, particularly, occurred during the December–January–February and June–July–August dry seasons. All these changes suggest that atmospheric conditions in the area are shifting from statically unstable conditions to conditionally unstable or statically stable conditions. Observed historical trends indicate that climate impacts and other human activities have stressed these unique and fragile environments.  相似文献   

8.
Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021–2040 compared to the baseline period of 1961–1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021–2040) over the baseline (1961–1990) varies from +3.4 to ?14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.  相似文献   

9.
Daily global solar radiation is an important input required in most crop models. In the present study, a sunshine-based model, the ?ngstr?m–Prescott model, is employed to estimate daily global solar radiation on a horizontal surface during the growing season in Northeast China. Data from six control groups are used. The controls include the entire sequence, precipitation days, and non-precipitation days both during the growing season and year-round. Estimations are validated by comparing the calculated values with the corresponding measured values. The results indicate that estimating daily global solar radiation during the growing season using data only from the growing season is better than using year-round data. Classifying days with respect to precipitation and non-precipitation is also unnecessary. The performance on estimating daily global solar radiation during the growing season using the entire data in growing season performs best. A sunshine-based equation is obtained using our method to estimate growing season daily radiation for all meteorological stations in Northeast China. The approved approach is expected to be beneficial to crop models and other agricultural purposes.  相似文献   

10.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

11.
Abstract

This study, using a climate change scenario generated by the Canadian Climate Centre (CCC) general circulation model (GCM) examines the impacts of such a climate change on agriculture in southern Quebec. Using a crop model from the Food and Agriculture Organization (FAO), yield responses of a variety of cereals, legumes, oleaginous and special crops to climate change are analysed and discussed.

Results show that under the 2 × CO2 climate scenario the growing season would be longer and accumulation of corn heat units and growing degree days would be more important than under actual climate (1961–1990). One of the more important results of this study is that, on the one hand yield of C3 cereals would be lower and that of C4 cereals higher in most agricultural regions. On the other hand, the direct fertilisation effect of increased CO2 is not considered. It must be cautioned however that we can not generalise results obtained for one legume crop to all legumes.  相似文献   

12.
Long-term (approximately 80?years) daily climate records at 12 weather stations across the agricultural production region of the Canadian Prairies were assessed to evaluate trends in seasonal heat units and moisture characteristics for corn (Zea mays). Crop water demand (CWD) and crop water deficit were modelled at each station. Growing season accumulation of these as well as corn heat units (CHU) and rainfall were tested for long-term trends using linear regression. Significant positive trends in CHU were present in the southernmost stations while the northern stations displayed no trend or significant negative trends. Growing season precipitation showed a significant increase on average and most stations showed a positive trend but only one station showed a significant positive trend. CWD declined at most stations with significant negative trends at seven stations. Crop water deficient also declined with significant negative trends at six stations. The spatial variation in these results and those reported in other studies in the region underscores the difficulty involved in forecasting future trends in agroclimatic conditions.  相似文献   

13.
Spatial variation of long term annual precipitation volume weighted concentrations of major chemical constituents (SO4 ?2, NO3 ?, Cl?, NH4 +, Ca+2, Mg+2, Na+ and K+ ) at all the ten Global Atmospheric Watch (GAW) stations in India for the period from 1981 to 2012 is studied in this paper. Ionic abundance and balance is studied as well. The range of long term annual mean pH at ten stations was 5.25?±?0.82 to 6.91?±?0.76, lowest at Mohanbari and highest at Jodhpur. The long term annual mean pH for the period 1981–2012 showed decreasing trend at all the stations (significant at 5 % level). Decadal mean pH among ten stations for 1981–1990, 1991–2000 and 2001–2012 ranged between 7.31 to 5.76, 7.45 to 4.92 and 6.16 to 4.77 respectively and showed decreasing trend at all the stations during 1981–1990 to 2001–12. The percentage occurrence of acidic pH (<5.65) at ten stations ranged from 3 to 72 %, lowest at Jodhpur and highest at Mohanbari and it increased from 1981–1990 to 2001–2012 almost at all the stations. Temporal variation of annual mean values of nssSO4 ?2, NO3 ?, Ca+2 and pH for the study period were attempted. Variation of nss K (non sea salt Potassium) at all the stations was studied to assess the biomass burning contribution in different regions. Non-marine (terrestrial) contribution dominated for majority of ionic constituents at most of the stations. However marine contribution was found to be dominant for Mg at Port Blair and Minicoy. Also sea salt fraction of SO4 was higher than terrestrial at Minicoy. Sources of measured ionic constituents in rain water are assessed through correlation analysis. The concentrations of all the ionic species were lowest at Kodaikanal, a high altitude hill top station and the total ionic mass was 136.0 μeq/l. Jodhpur, an arid station not only had highest concentrations of Ca+2, SO4 ?2 and K+ but also had highest total ionic content (1051.8 μeq/l) among all the stations. At Srinagar, Jodhpur, Allahabad, Nagpur and Pune stations Ca+2 was the dominant cation while dominant anion was NO3 ? for Srinagar, Allahabad, and Nagpur and Cl? for Jodhpur and Pune; at Mohanbari NO3 ? and Ca+2; at Visakhapatnam, Port Blair and Minicoy Na+ and Cl? were abundant. Temporal variation had shown an increasing trend for nssSO4 ?2 and NO3 ? and obviously decreasing trend for pH at all the stations. However, Ca+2 showed a decreasing trend at all the stations except at Port Blair. With the exception of Pune and Jodhpur stations, nssK showed a decreasing trend at all the stations revealing decreasing influence of soil/biomass burning over Indian GAW stations. Negative correlation of pH with SO4 ?2 was found to be weak compared to NO3 .  相似文献   

14.
We present a study that suggests greening in the circumpolar high-latitude regions amplifies surface warming in the growing season (May–September) under enhanced greenhouse conditions. The investigation used a series of climate simulations with the Community Atmospheric Model version 3—which incorporates a coupled, dynamic global vegetation model—with and without vegetation feedback, under both present and doubled CO2 concentrations. Results indicate that climate warming and associated changes promote circumpolar greening with northward expansion and enhanced greenness of both the Arctic tundra and boreal forest regions. This leads to additional surface warming in the high-latitudes in the growing season, primarily through more absorption of incoming solar radiation. The resulting surface and tropospheric warming in the high-latitude and Arctic regions weakens prevailing tropospheric westerlies over 45–70N, leading to the formation of anticyclonic pressure anomalies in the Arctic regions. These pressure anomalies resemble the anomalous circulation pattern during the negative phase of winter Arctic Oscillation. It is suggested that these circulation anomalies reinforce the high-latitude and Arctic warming in the growing season.  相似文献   

15.
The potential impacts of climate change on potatoes cropping in the Peruvian highlands (Altiplano) is assessed using climate projections for 2071–2100, obtained from the HadRM3P regional atmospheric model of the Hadley Centre. The atmospheric model is run under two different special report on emission scenarios: high CO2 concentration (A2) and moderate CO2 concentration (B2) for four locations situated in the surroundings of Lake Titicaca. The two main varieties of potato cultivated in the area are studied: the Andean potato (Solanum tuberosum) and the bitter potato (Solanum juzepczukii). A simple process-oriented model is used to quantify the climatic impacts on crops cycles and yields by combining the effects of temperature on phenology, of radiation and CO2 on maximum yield and of water balance on yield deficit. In future climates, air temperature systematically increases, precipitation tends to increase at the beginning of the rainy season and slightly decreases during the rest of the season. The direct effects of these climatic changes are earlier planting dates, less planting failures and shorter crop cycles in all the four locations and for both scenarios. Consequently, the harvesting dates occur systematically earlier: roughly in January for the Andean potato instead of March in the current situation and in February for the bitter potato instead of April. Overall, yield deficits will be higher under climate change than in the current climate. There will be a strong negative impact on yields for S. tuberosum (stronger under A2 scenario than under B2); the impact on S. juzepczukii yields, however, appears to be relatively mixed and not so negative.  相似文献   

16.
Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001–2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.  相似文献   

17.
The multifractal behavior of daily rainfall was investigated for a watershed in Eastern China to better understand the temporal structure of rainfall under monsoonal climate. In this study, over periods of up to 46 years, daily rainfall recorded in 1962 to 2007 at 10 meteorological stations in the administrative area of Lin-Yi City in Shandong province were analyzed with focus on features of power spectra, standard statistical moments, and exceedance probability tails of these daily rainfall time series. Spectral analysis and study of the moments of the rainfall intensity showed that a scaling range from 1 day to 1 year is present. Empirical moment scaling functions of the rainfall intensity calculated for different moments of order suggested that the values of universal multifractal parameters α and C 1 for all stations were approximated to 0.7 and 0.37, respectively. Comparing with the parameters estimated in other literatures, our results showed higher values for α but lower values for C 1 in general, which suggested that the rainfall series in the study watershed influenced by the East-Asia monsoon climate have similarities to that in France, but are spikier and smoother than that in the semi-arid region in Portugal. The parameter H values were estimated as vary from ?0.18 to ?0.22, which is similar to the result obtained by Tessier et al. (J Geophys Res-Atmos 101:26427–26440, 1996).  相似文献   

18.
In phenological studies, the plant developments are analysed considering their relationships with seasonal meteorological conditions; moreover, the influences of geographical features on biological responses have to be also considered. Different studies analysed the influence of latitude on phenological phases to investigate the possible different magnitude of biological response. In our experience, this type of geographic evaluation was conducted considering one of the more important plant species of Mediterranean shrub, the olive (Olea europaea L.) in fifteen olive monitoring stations, four located in Tunisia and eleven in Italy, from the southern Zarzis area at 33° to the northern Perugia area at 43° of latitude. The olive flowering phenomenon was studied, utilising an aerobiological monitoring method through appropriate pollen traps located inside olive groves from 1999 to 2008. The olive monitored pollen grains were recognised and evaluated to obtain daily pollen concentrations to define the flowering dates in the different study areas. The biometeorological statistical analysis showed the 7°C threshold temperature and the single triangle method for growing degree days (GDD) yearly computing as the better ones in comparison to others. Moreover, the regression analysis between the dates of full flowering and the GDD amounts at the different monitoring latitudes permitted us to evidence the biological response of olive species in geographic regions with different climate patterns. The specific biological response at different latitude was investigated, the slope results, as flowering days per heat amounts, evidenced that olive species behaviours are very constant in consequence to similar meteorological conditions independently to latitude variations. Averagely, the relationships between plant’s phenology, temperature trends and geographical features are very close, even if the yearly mesoscale meteorological variations force to consider, year by year, phenological advances or delays as local events.  相似文献   

19.
Assessing disease risk has become an important component in the development of climate change adaptation strategies. Here, the infection ability of leaf blast (Magnaporthe oryzae) was modeled based on the epidemiological parameters of minimum (T min), optimum (T opt), and maximum (T max) temperatures for sporulation and lesion development. An infection ability response curve was used to assess the impact of rising temperature on the disease. The simulated spatial pattern of the infection ability index (IAI) corresponded with observed leaf blast occurrence in Indo-Gangetic plains (IGP). The IAI for leaf blast is projected to increase during the winter season (December–March) in 2020 (2010–2039) and 2050 (2040–2069) climate scenarios due to temperature rise, particularly in lower latitudes. However, during monsoon season (July–October), the IAI is projected to remain unchanged or even reduce across the IGP. The results show that the response curve may be successfully used to assess the impact of climate change on leaf blast in rice. The model could be further extended with a crop model to assess yield loss.  相似文献   

20.
Predictions of future climate change rely on models of how both environmental conditions and disturbance impact carbon cycling at various temporal and spatial scales. Few multi-year studies, however, have examined how carbon efflux is affected by the interaction of disturbance and interannual climate variation. We measured daytime soil respiration (R s) over five summers (June–September) in a Sierra Nevada mixed-conifer forest on undisturbed plots and plots manipulated with thinning, burning and their combination. We compared mean summer R s by year with seasonal precipitation. On undisturbed plots we found that winter precipitation (PPTw) explained between 77–96% of interannual variability in summer R s. In contrast, spring and summer precipitation had no significant effect on summer R s. PPTw is an important influence on summer R s in the Sierra Nevada because over 80% of annual precipitation falls as snow between October and April, thus greatly influencing the soil water conditions during the following growing season. Thinning and burning disrupted the relationship between PPTw and Rs, possibly because of significant increases in soil moisture and temperature as tree density and canopy cover decreased. Our findings suggest that R s in some moisture-limited ecosystems may be significantly influenced by annual snowpack and that management practices which reduce tree densities and soil moisture stress may offset, at least temporarily, the effect of predicted decreases in Sierran snowpack on R s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号