首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961–2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.  相似文献   

2.
The variations in several climatological characteristics are studied on the basis of hourly (half-hourly) meteorological terminal observations at 51 aerodromes of the Russian Federation in 2001–2015. For every aerodrome extreme temperature, wind speed and gusts, and QNH are analyzed for the above period. Using data for three consecutive 5-year periods, variations in the number of days with temperature above 30°C or below -30°C, with wind speed of ≥10 m/s and gusts of ≥15 m/s are considered. The occurrence frequency of significant weather events affecting the takeoff and landing (fog, blizzard, freezing precipitation, thunderstorm) is investigated. The results for aerodromes with positive or negative trends in the occurrence frequency of weather phenomena in 2001–2015 are presented.  相似文献   

3.
In this study, urban climate in Nanjing of eastern China is simulated using 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model. Based on the 10-summer simulation results from 2000 to 2009 we find that the WRF model is capable of capturing the high-resolution features of urban climate over Nanjing area. Although WRF underestimates the total precipitation amount, the model performs well in simulating the surface air temperature, relative humidity, and precipitation frequency and inter-annual variability. We find that extremely hot events occur most frequently in urban area, with daily maximum (minimum) temperature exceeding 36°C (28°C) in around 40% (32%) of days. Urban Heat Island (UHI) effect at surface is more evident during nighttime than daytime, with 20% of cases the UHI intensity above 2.5°C at night. However, The UHI affects the vertical structure of Planet Boundary Layer (PBL) more deeply during daytime than nighttime. Net gain for latent heat and net radiation is larger over urban than rural surface during daytime. Correspondingly, net loss of sensible heat and ground heat are larger over urban surface resulting from warmer urban skin. Because of different diurnal characteristics of urban-rural differences in the latent heat, ground heat and other energy fluxes, the near surface UHI intensity exhibits a very complex diurnal feature. UHI effect is stronger in days with less cloud or lower wind speed. Model results reveal a larger precipitation frequency over urban area, mainly contributed by the light rain events (< 10 mm d?1). Consistent with satellite dataset, around 10?C20% more precipitation occurs in urban than rural area at afternoon induced by more unstable urban PBL, which induces a strong vertical atmospheric mixing and upward moisture transport. A significant enhancement of precipitation is found in the downwind region of urban in our simulations in the afternoon.  相似文献   

4.
Observed trends in severe weather conditions based on public alert statements issued by Environment Canada are examined for Canada. Changes in extreme heat and extreme cold events represented by various humidex and wind chill indices are analyzed for 1953–2012 at 126 climatological stations. Changes in heavy rainfall events based on rainfall amounts provided by tipping bucket rainfall gauges are analyzed for 1960–2012 at 285 stations. The results show that extreme heat events, defined as days with at least one hourly humidex value above 30, have increased significantly at more than 36% of the stations, most of which are located south of 55°N; days with nighttime hourly humidex values remaining above 20 have increased significantly at more than 52% of the stations, most of which are located south of 50°N. Extreme cold events represented by days with at least one hourly wind chill value below ?30 have decreased significantly at more than 76% of the stations across the country. No consistent changes were found in heavy rainfall events. Because city residents are very vulnerable to severe weather events, detailed results on changes in extreme heat, extreme cold, and heavy rainfall events are also provided for ten urban centres.  相似文献   

5.
Some evidence of climate change in twentieth-century India   总被引:1,自引:0,他引:1  
The study of climate changes in India and search for robust evidences are issues of concern specially when it is known that poor people are very vulnerable to climate changes. Due to the vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India are floods and droughts, monsoon depressions and cyclones, heat waves, cold waves, prolonged fog and snowfall. Results of this comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively. Also decrease in the minimum temperature during summer monsoon and its increase during post-monsoon months have created a large difference of about 0.8°C in the seasonal temperature anomalies which may bring about seasonal asymmetry and hence changes in atmospheric circulation. Opposite phases of increase and decrease in the minimum temperatures in the southern and northern regions of India respectively have been noticed in the interannual variability. In north India, the minimum temperature shows sharp decrease of its magnitude between 1955 and 1972 and then sharp increase till date. But in south India, the minimum temperature has a steady increase. The sea surface temperatures (SST) of Arabian Sea and Bay of Bengal also show increasing trend. Observations indicate occurrence of more extreme temperature events in the east coast of India in the recent past. During summer monsoon months, there is a decreasing (increasing) trend in the frequency of depressions (low pressure areas). In the last century the frequency of occurrence of cyclonic storms shows increasing trend in the month of November. In addition there is increase in the number of severe cyclonic storms crossing Indian Coast. Analysis of rainfall amount during different seasons indicate decreasing tendency in the summer monsoon rainfall over Indian landmass and increasing trend in the rainfall during pre-monsoon and post-monsoon months.  相似文献   

6.
This paper addresses the contribution of urban land use change to near-surface air temperature during the summer extreme heat events of the early twenty-first century in the Beijing–Tianjin–Hebei metropolitan area. This study uses the Weather Research Forecasting model with a single urban canopy model and the newest actual urban cover datasets. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing–Tianjin–Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60 °C. This change is most obvious at night with an increase up to 0.95 °C, for which the total contribution of anthropogenic heat is 34 %. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs, an effective way of reducing urban heat island, which can reduce the urban mean temperature by approximately 0.51 °C and counter approximately 80 % of the heat wave results from urban sprawl during the last 20 years.  相似文献   

7.
亚洲东部冬季地面温度变化与平流层弱极涡的关系   总被引:2,自引:1,他引:1  
利用NCEP资料计算NAM指数和标准化温度距平,对17次平流层弱极涡事件时亚洲东部温度变化进行了研究。结果表明:平流层环流异常比对流层温度变化超前约15天,地面温度变化的最大距平出现在平流层弱极涡后期,大约以40°N为界,北部比正常年份偏冷而南部偏暖。文中通过位势涡度的分布和变化以及500 hPa东亚大槽的变化讨论了其影响过程和机理,在弱极涡初期和中期,自平流层向下,高位涡冷空气主要局限于60°N以北。从弱极涡的后期开始,在45°N以北地区,高位涡冷空气向南扩张,在对流层中上层,极地附近的高位涡冷空气扩张到45°N附近。同时,500 hPa东亚大槽虽有加强,但低压区向东延伸,而贝加尔湖附近的高压脊显著减弱,致使槽后的偏北气流减弱,槽后冷空气主要影响中国华北、东北及其以北地区,造成这些地区偏冷。而40°N以南地区,从弱极涡的后期开始有南方低位涡偏暖空气向北运动,同时冷空气活动减少,地面显著偏暖。  相似文献   

8.
ABSTRACT

Trends in indices based on daily temperature and precipitation are examined for two periods: 1948–2016 for all stations in Canada and 1900–2016 for stations in the south of Canada. These indices, a number of which reflect extreme events, are considered to be impact relevant. The results show changes consistent with warming, with larger trends associated with cold temperatures. The number of summer days (when daily maximum temperature >25°C) has increased at most locations south of 65°N, and the number of hot days (daily maximum temperature >30°C) and hot nights (daily minimum temperature >22°C) have increased at a few stations in the most southerly regions. Very warm temperatures in both summer and winter (represented by the 95th percentile of their daily maximum and minimum temperatures, respectively) have increased across the country, with stronger trends in winter. Warming is more pronounced for cold temperatures. The frost-free season has become longer with fewer frost days, consecutive frost days, and ice days. Very cold temperatures in both winter and summer (represented by the 5th percentile of their daily maximum and minimum temperatures, respectively) have increased substantially across the country, again with stronger trends in the winter. Changes in other temperature indices are consistent with warming. The growing season is now longer, and the number of growing degree-days has increased. The number of heating degree-days has decreased across the country, while the number of cooling degree-days has increased at many stations south of 55°N. The frequency of annual and spring freeze–thaw days shows an increase in the interior provinces and a decrease in the remainder of the country. Changes in precipitation indices are less spatially coherent. An increase in the number of days with rainfall and heavy rainfall is found at several locations in the south. A decrease in the number of days with snowfall and heavy snowfall is observed in the western provinces, while an increase is found in the north. There is no evidence of significant changes in the annual highest 1-day rainfall and 1-day snowfall. The maximum number of consecutive dry days has decreased, mainly in the south.  相似文献   

9.
Inclusion of the effects of vegetation feedback in a global climate change simulation suggests that the vegetation–climate feedback works to alleviate partially the summer surface warming and the associated heat waves over Europe induced by the increase in atmospheric CO2 concentrations. The projected warming of 4°C over most of Europe with static vegetation has been reduced by 1°C as the dynamic vegetation feedback effects are included.. Examination of the simulated surface energy fluxes suggests that additional greening in the presence of vegetation feedback effects enhances evapotranspiration and precipitation, thereby limiting the warming, particularly in the daily maximum temperature. The greening also tends to reduce the frequency and duration of heat waves. Results in this study strongly suggest that the inclusion of vegetation feedback within climate models is a crucial factor for improving the projection of warm season temperatures and heat waves over Europe.  相似文献   

10.
Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901–1930, 1931–1960, 1961–1990 to 2001–2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991–2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981–1990, 1991–2000, and 2001–2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong spatiotemporal fluctuations in explanatory power of the different indices over all German counties and the three time periods. Over the 30 years, yield deviations were increasingly well correlated with heat and drought-related indices, with the number of days with maximum temperature above 25 °C during anthesis showing a sharp increase in explanatory power over entire Germany in the final 2001–2010 period.  相似文献   

11.
Asymmetrical monsoons during the recent past have resulted into spatially variable and devastating floods in South Asia. Analysis of historic precipitation extremes record may help in formulating mitigation strategies at local level. Eleven indices of precipitation extremes were evaluated using RClimDex and daily time series data for analysis period of 1981–2010 from five representative cities across Punjab province of Pakistan. The indices include consecutive dry days, consecutive wet days, number of days above daily average precipitation, number of days with precipitation ≥10 mm, number of days with precipitation ≥20 mm, very wet days, extremely wet days, simple daily intensity index, maximum 1-day precipitation quantity, maximum 5 consecutive day precipitation quantity, and annual total wet-day precipitation. Mann-Kendall test and Sen’s slope extremes were used to detect trends in indices. Droughts and excessive precipitation were dictated by elevation from mean sea level with prolonged dry spells in southern Punjab and vice versa confirming spatial trends for precipitation extremes. However, no temporal trend was observed for any of the indices. Summer in the region is the wettest season depicting contribution of monsoons during June through August toward devastating floods in the region.  相似文献   

12.
Global warming is one of the greatest environmental, economic, and social threats in the world. There are many assessments to estimate climate variability over many regions. A change in the Earth’s surface temperature leads to increase in extreme temperature events, which are harmful to the ecosystem, and moreover, they create danger on human health. In this study, we have selected the western part of Turkey as the study area, since climate change projections for Turkey point out that the highest temperature change can be expected on this region during summer, and the Turkish population is very dense here to be affected by extreme events. We have used apparent temperatures to define the heat waves which we have determined their frequencies for the summer months (June–August) of 1965–2006. Since the regional comparisons of station results are intended, we selected the 90th percentile value for each station as a threshold value to be used in the delineation of heat waves. Then, the number of heat waves is determined by imposing the constraint that apparent temperatures stay above the threshold value at least for three consecutive days. Then, the changes in the number of hot days and heat waves and also their durations are analyzed by using the linear least square method. We have found that the number of hot days, heat waves, and heat wave durations is increased between 1965 and 2006 on the western part of Turkey. Additionally, their rate of change is larger within the last decade and extremes are frequently observed after 1998. Regional distributions show that the tendency of the number of heat wave events increases towards the southern latitudes of the domain. Moreover, we investigated the relationship between the number of hot days and the sea surface temperatures of the Mediterranean Sea and Black Sea. Correlation analyses are carried out by the number of hot days and averaged sea surface temperatures on the regions of the western, central, and eastern Mediterranean Sea and the Black Sea. It is found that the number of hot days of west Turkey is better correlated with the sea surface temperatures averaged over eastern Mediterranean and Black Seas. The number of heat waves is found significantly correlated with the fire occurrences for most of the stations.  相似文献   

13.
In this study, the multifractal detrended fluctuation analysis method is employed to determine the thresholds of extreme events. Subsequently, the characteristics of extreme temperatures have been analyzed over Northeast China during 1961–2009. Approximately 58 % of stations have negative interdecadal trends of ?2.2 days/10 years to 0 days/10 years in extreme low minimum temperature (ELMT) frequency. Notable positive trend of 0–2.5 days/10 years in extreme high maximum temperature (EHMT) frequency of about 94 % stations are found. Approximately 58 % of stations have decreasing trend in ELMT intensity, whereas 69 % of stations have increasing trend of EHMT intensity. The trends are the range of ?0.72 °C/10 years to 0 °C/10 years and 0–0.7 °C/10 years, respectively. We propose the extreme temperatures indices, ELMT index (ELMTI) and EHMT index (EHMTI), which combined the frequency and intensity of extreme temperatures to represent the order of severity of extreme temperatures. According to this approach, serious ELMT mainly occur in the Songliao Plain and the Sanjiang Plain, especially in the Songliao Plain. Serious EHMT distinctly occur in the Sanjing Plain, and the southwestern and northwestern regions of Northeast China in recent five decades.  相似文献   

14.
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.  相似文献   

15.
Ping Liu 《Climate Dynamics》2013,40(3-4):761-773
This study estimates how the Madden-Julian oscillation (MJO) will change with uniform global warming of 2 and 4 K at the Earth surface using an aqua-planet version of the NCAR CAM2 implemented with the Tiedtke convection scheme. Solar insolation is specified at the vernal equinox with a diurnal cycle. Thirty-year integrations are carried out for each case and the last 20-year’s results are used for analysis. For the warmer cases, the modeled MJO’s eastward propagation remains dominant at zonal wave numbers 1–4, and notable increase occurs in variance, power spectra, and the number of prominent MJO events. The convective heating is enhanced more in upper troposphere, and the MJO power spectra increase more on 20–30 days than on 30–60 days. In all cases, composite life cycles of prominent MJO events show that the anomalous surface latent heat flux lags precipitation by about 90° in phase, characterizing the nonlinear wind induced surface heat exchange (WISHE) to destabilize the MJO. Interacting with a warmer surface in the 4 K case, perturbations of zonal wind and temperature at bottom model level contribute to the nonlinear WISHE coherently with the latent heat flux. Meanwhile anomalous boundary layer convergence leads precipitation by some 45° in phase, indicating the frictional moisture convergence to maintain the enhanced MJO.  相似文献   

16.
The 2015 Paris Agreement commits countries to pursue efforts to limit the increase in global mean temperature to 1.5 °C above pre-industrial levels. We assess the consequences of achieving this target in 2100 for the impacts that are avoided, using several indicators of impact (exposure to drought, river flooding, heat waves and demands for heating and cooling energy). The proportion of impacts that are avoided is not simply equal to the proportional reduction in temperature. At the global scale, the median proportion of projected impacts avoided by the 1.5 °C target relative to a rise of 4 °C ranges between 62 and 95% across sectors: the greatest reduction is for heat wave impacts. The 1.5 °C target results in impacts that would be between 27 and 62% lower than with the 2 °C target. For each indicator, there are differences in the proportions of impacts avoided between regions depending on exposure and the regional changes in climate (particularly precipitation). Uncertainty in the proportion of impacts that are avoided for a specific sector depends on the range in the shape of the relationship between global temperature change and impact, and this varies between sectors.  相似文献   

17.
Climate change has been receiving wide attention in the last few decades. In order to quantify the climate variability of extreme weather events and their possible impacts on weather parameters and air quality, cold surge events in the past 45 years and the difference in characteristics of air pollutants before and after frontal passage has been examined after December 1993 in Taiwan. The potential impact of climate change on air pollutant concentration and its health implication were presented and discussed. In the past 45 years, the cold surge days (about 18.7 days, or 0.42 day/year) decreased significantly and the average lowest daily temperature for winter in northern Taiwan increased nearly 3°C (0.067°C/year). Based on the definition of cold surge in Taiwan and excluding the stagnation frontal passage, 21 cold surge frontal passage (CSFP) cases and 89 common frontal passage (CFP) events in winter (December–February) were identified in the past 12 years (1993–2005). We take the frontal passage day as the baseline and the differences in air pollutant concentrations and weather-related parameters between the two days before and after the frontal passage days were examined for each case. The averages of the above-mentioned differences during CSFP were compared to the corresponding differences during CFP. During CSFP, the air temperatures after the frontal passage were nearly 4–6°C lower than before the passage at both the background windward stations and urban stations. The average wind speed was about 4–5 m/s higher at the windward stations and less than 2 m/s higher in the major urban areas in Taiwan. During CFP, there was a 2°C increase in temperature but 1 m/s decrease in wind speeds on the day after frontal passage. Because of these meteorological differences, the concentration change of air pollutants during CSFP is significantly greater than that during CFP, especially for PM10 concentration. The difference of PM10 concentration during CSFP can be as large as 20–40 μg/m3 while that during CFP is only about 10 μg/m3. The differences in the other air pollutants such as CO, SO2, and O3 during CSFP are greater than those during CFP, but the difference is insignificant. Under the warming trend, less frequent CSFP’s are expected; the impacts on deterioration of air quality and human health are noteworthy.  相似文献   

18.
Results from high resolution 7-km WRF regional climate model (RCM) simulations are used to analyse changes in the occurrence frequencies of heat waves, of precipitation extremes and of the duration of the winter time freezing period for highly populated urban areas in Central Europe. The projected climate change impact is assessed for 11 urban areas based on climate indices for a future period (2021–2050) compared to a reference period (1971–2000) using the IPCC AR4 A1B Scenario as boundary conditions. These climate indices are calculated from daily maximum, minimum and mean temperatures as well as precipitation amounts. By this, the vulnerability of these areas to future climate conditions is to be investigated. The number of heat waves, as well as the number of single hot days, tropical nights and heavy precipitation events is projected to increase in the near future. In addition, the number of frost days is significantly decreased. Probability density functions of monthly mean summer time temperatures show an increase of the 95th percentile of about 1–3 °C for the future compared with the reference period. The projected increase of cooling and decrease of heating degree days indicate the possible impact on urban energy consumption under future climate conditions.  相似文献   

19.
Mitigating the heat stress via a derivative policy is a vital financial option for agricultural producers and other business sectors to strategically adapt to the climate change scenario. This study has provided an approach to identifying heat stress events and pricing the heat stress weather derivative due to persistent days of high surface air temperature (SAT). Cooling degree days (CDD) are used as the weather index for trade. In this study, a call-option model was used as an example for calculating the price of the index. Two heat stress indices were developed to describe the severity and physical impact of heat waves. The daily Global Historical Climatology Network (GHCN-D) SAT data from 1901 to 2007 from the southern California, USA, were used. A major California heat wave that occurred 20-25 October 1965 was studied. The derivative price was calculated based on the call-option model for both long-term station data and the interpolated grid point data at a regular 0.1 ×0.1 latitude-longitude grid. The resulting comparison indicates that (a) the interpolated data can be used as reliable proxy to price the CDD and (b) a normal distribution model cannot always be used to reliably calculate the CDD price. In conclusion, the data, models, and procedures described in this study have potential application in hedging agricultural and other risks.  相似文献   

20.
In this paper we use sea surface height (SSH) derived from satellite altimetry and an analytical linear equatorial wave model to interpret the evolution of the Indian Ocean Dipole (IOD) in the framework of recharge oscillator theory. The specific question we address is whether heat content in the equatorial band, for which SSH is a proxy, is a predictor of IOD development as it is for El Niño and the Southern Oscillation (ENSO) in the Pacific. We find that, as in the Pacific, there are zonally coherent changes in heat content along the equator prior to the onset of IOD events. These changes in heat content are modulated by wind-forced westward propagating Rossby waves in the latitude band 5°–10°S, which at the western boundary reflect into Kelvin waves trapped to the equator. The biennial character of the IOD is affected by this cycling of wave energy between 5° and 10°S and the equator. Heat content changes are a weaker leading indicator of IOD sea surface temperature anomaly development than is the case for ENSO in the Pacific though because other factors are at work in generating IOD variability, one of which is ENSO forcing itself through changes in the Walker Circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号