首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Posidonia oceanica meadows can be severely damaged by dredge-fill operations. We report on the construction of gas pipelines that occurred between 1981 and 1993 in SW Sicily, Italy. A large portion of the meadow was mechanically removed, and the excavated trench was filled with a mosaic of substrates, ranging from sand to consolidated rock debris. Meadow loss and recovery were quantified over 7 years after the end of operations. We recorded an overall loss of 81.20 ha of meadow. Substrate strongly affected recovery as the percent cover by P. oceanica consistently increased on calcareous rubble, reaching values of 44.37 ± 3.05% in shallow sites after 7 years, whereas no significant increase occurred on other substrates. As in the Mediterranean Sea exploitation of coastal areas continues to grow with consequent impacts on P. oceanica meadows, this case study illustrates how artificial rubble-like materials could be employed to support the restoration of damaged meadows.  相似文献   

2.
A population of Theodoxus fluviatilis L in the littoral zone of Lake Esrom was investigated from November 1977 to February 1979. The population was sampled every month in the winter period and twice during the rest of the year. Biomass was estimated as ash-free dry weight (AFDW) of the organic matter both of the soft parts of the animal and the shell itself. The relation between AFDW (c) and shell length (l) was log c=2.9509×log (l)−1.7120. The population comprised more than 1 year-class, which could be separated by shell length, by a narrow band on the shells and the growth of algae on the shell. The life cycle lasted years. The oldest animals had a shell length of 7.0-7.5 mm. A few individuals who were estimated to be years had a shell length up to 8.6 mm. Population density varied between 575 and 2115 individuals m−2 on the stony substratum. The average was 1160 individuals m−2. Mortality was low during the summer period. In winter many animals died due to the effect of ice and stormy weather on the stony substratum. Growth of the animals was estimated from the shell length. Maximum growth was observed from May to August with no growth during the winter. Egg capsules were found on the stones all year round. New capsules were found from late May to the middle of November. Most freshly laid capsules were observed in May-June and August-September. Capsules from the late summer hatched in spring and capsules laid in the spring hatched in August-September. The average annual net production for the whole population was estimated by three methods. The Allen curve method gave 1.895 AFDW m−2, the growth-increment method gave 1.784 mg AFDW m−2 and the Hynes method 2.284 mg AFDW m−2. Corresponding estimated P/B ratios were 1.29, 1.30 and 1.57. Annual net-production of the four investigated year-classes was 16 mg AFDW m−2 year−1 for 1975, 224 mg AFDW m−2 year−1 for 1976, 1.258 mg AFDW m−2 year−1 for 1977 and 287 mg AFDW m−2 year−1 for 1978. P/B ratios for the three oldest year-classes were, respectively, 0.32, 0.50 and 1.67. A comparison with other investigations on gastropod life cycles, reproduction and P/B ratios is made and differences discussed. Variations are correlated to temperature, and food quality and quantity.  相似文献   

3.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable.  相似文献   

4.
The ‘Chicken Creek’ artificial catchment area, Welzow-South, E Germany, created to study processes and structures of initial ecosystem development, discharges into a small experimental lake (A=3805 m2, V=3992 m3, zmax=2.4 m). This lake was man-made in 2005 and filled by natural surface runoff until January 2006. In summer 2006 and 2008, the actual development of sediments and the evolution of the phosphorus (P) cycle were studied. 19.7% of the original lake volume was filled by sediment within the first 3 years. A fine-grained sediment representing silt (6.3-63 μm) accumulated at high accretion rates at the deepest point (200 mm a−1, 0-24 mm week−1) due to massive erosion in the catchment. The sediment is low in organic matter (2.5-5.2%) and total P (TP, 0.31-0.97 mg g−1). Low amounts of P associated with degradable organic matter and surplus of metal hydroxides (Fe:P∼40, Al:P∼20) favor an efficient P binding and low dissolved P concentrations in pore water (1-107 μg l−1). Hence, the mineral sediment quality and the low rates of P release (0.06 mg m−2 d−1) revealed that a lake at an initial stage of development has essentially no sedimentary P cycle compared to eutrophic shallow lakes. However, the increasing emersed and submersed macrophyte growth will control further lake succession by intensifying the internal nutrient cycling. The macrophytes drive the evolution of a sedimentary P cycle by mobilizing and translocating P, by accumulating carbon and thus by stimulating microbial and redox processes.  相似文献   

5.
The metabolic balance between production and respiration in plankton communities of the Gulf of Papua was investigated in May 2004. Water samples taken at 19 stations were allocated to groups on the basis of physico-chemical characteristics. Oxygen consumption and production in flasks incubated in the dark and in the light was determined by micro-Winkler titration. Dark bottle respiration in samples influenced by the estuarine plume averaged 3.09±1.92 (SD) mmol O2 m−3 d−1 and production within surface light bottles averaged 7.63±3.36 (SD)  mmol O2 m−3 d−1. Corresponding values in stations more typical of the central Gulf of Papua were 1.68±1.30 (SD) mmol O2 m−3 d−1 and 1.08±2.25 (SD) mmol O2 m−3 d−1. Despite a shallow (<10 m) euphotic zone within the plume stations, phytoplankton production in the surface layers was sufficiently high to subsidise total water column respiration. Integrating production and respiration over the water column resulted in a calculation of net community production (NCP) of 626±504 (SD) mg C m−2 d−1, and community respiration (CR) of 712±492 mg C m−2 d−1 at the plume stations, with an average P:R ratio of 1.97. In the offshore group NCP was 157±450 (SD) mg C m−2 d−1 and CR was 1620±1576 mg C m−2 d−1. The average P:R ratio was 1.27. Three of the 7 stations allocated to the offshore group were net heterotrophic. In contrast to earlier studies in the area indicating that the Gulf of Papua waters is heterotrophic [Robertson, A.I., Dixon, P., Alongi, D.M., 1998. The influence of fluvial discharge on pelagic production in the Gulf of Papua, Northern Coral Sea. Estuarine, Coastal and Shelf Science 46, 319–331], our data indicate that in May 2004 the Gulf was in positive metabolic balance, but by only ∼120 mg C m−2 d−1. We conclude that waters of the Gulf of Papua under riverine influence are net autotrophic, but that within the central Gulf there is a fine metabolic balance alternating between autotrophy and heterotrophy.  相似文献   

6.
Low tide rainfall may represent an important but little studied process affecting sediment fluxes on intertidal mudflats. In this study, we simulated rainfall events on an intertidal mudflat (median grain size=18.4 μm) of low slope (1 in 300) then quantified effects on sediment erodibility. Treatments consisted of a high (4.1 mm min−1 for 6 min) and low (0.36 mm min−1 for 60 min) rain intensity, chosen to match naturally occurring events and experiments were conducted seasonally (May and August) to encompass variations in ambient sediment stability. Changes in bed elevation due to rainfall were estimated using marked rods and sediment erodibility parameters (mass of sediment eroded at a flow velocity of 0.3 m s−1 (ME-30, g m−2) and critical erosion velocity (Ucrit, m s−1)) were determined in annular flumes (bed area=0.17 m2). Ambient/control sediment erodibility in May (ME-30=211 g m−2, Ucrit=0.18 m s−1) was higher than in August (ME-30=30 g m−2, Ucrit=0.26 m s−1) and was correlated with changes in biological activity. In May, surface sediment was influenced by high densities of the bioturbating snail Hydrobia ulvae (1736 ind. m−2) and low biomass of the sediment stabilising microphytobenthos (5.7 μg chlorophyll a cm−2). In contrast, in August H. ulvae densities were low (52 ind. m−2) and microphytobenthic biomass higher (9.2 μg chlorophyll a cm−2). The high rain treatment caused a decrease in bed elevation of between 1.5 mm (May) and 4.4 mm (August) and significantly reduced sediment organic content and microphytobenthic biomass. Rainfall increased sediment erodibility; compared to ambient sediments ME-30 increased by a factor of 1.4× in May and 8.8× in August and caused a 10–30% decline in Ucrit. The seasonal difference in treatment effect was due to the change in ambient sediment stability. The low rain treatment in August had no effect on bed elevation, microphytobenthic biomass or sediment erodibility. In May, the same treatment caused a reduction in bed elevation (0.5 mm) and microphytobenthic biomass but counter-intuitively, a decrease in sediment erodibility (ME-30 was reduced by 40%, Ucrit increased by 5%) compared to controls. We attribute this result to removal by rainfall of easily eroded surface flocs and biogenic roughness which resulted in an underlying sediment with a smoother surface and greater resistant to erosion. Results suggest that high intensity rain events may destabilise intertidal sediments making them more susceptible to erosion by returning tidal currents and that the sediment eroded during such events may represent a considerable fraction (up to 25%) of the seasonal variation in shore elevation. The impact of natural rain events are likely to vary considerably due to variations in droplet size, intensity and duration and the interaction with ambient sediment stability.  相似文献   

7.
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important water cycle and agricultural applications. Recent work has demonstrated that thermal remote sensing estimates of surface radiometric temperature provide a complementary source of land surface information that can be used to define a robust proxy for root-zone (top 1 m of the soil column) soil moisture availability. In this analysis, we examine the potential benefits of simultaneously assimilating both microwave-based surface soil moisture retrievals and thermal infrared-based root-zone soil moisture estimates into a soil water balance model using a series of synthetic twin data assimilation experiments conducted at the USDA Optimizing Production Inputs for Economic and Environmental Enhancements (OPE3) site. Results from these experiments illustrate that, relative to a baseline case of assimilating only surface soil moisture retrievals, the assimilation of both root- and surface-zone soil moisture estimates reduces the root-mean-square difference between estimated and true root-zone soil moisture by 50% to 35% (assuming instantaneous root-zone soil moisture retrievals are obtained at an accuracy of between 0.020 and 0.030 m3 m−3). Most significantly, improvements in root-zone soil moisture accuracy are seen even for cases in which root-zone soil moisture retrievals are assumed to be relatively inaccurate (i.e. retrievals errors of up to 0.070 m3 m−3) or limited to only very sparse sampling (i.e. one instantaneous measurement every eight days). Preliminary real data results demonstrate a clear increase in the R2 correlation coefficient with ground-based root-zone observations (from 0.51 to 0.73) upon assimilation of actual surface soil moisture and tower-based thermal infrared temperature observations made at the OPE3 study site.  相似文献   

8.
The seasonal ecological response of microzooplankton in the southeastern Arabian Sea is presented. During the spring intermonsoon period, stratification and depletion of nitrate in the surface waters (nitracline was at 60 m depth) cause low integrated chlorophyll a (av. 19±11.3 mg m−2) and primary production (av. 164±91 mgC m−2 d−1). On the other hand, nutrient enrichment associated with coastal upwelling and river influx during the onset and peak summer monsoon resulted in high integrated chlorophyll a (av. 21±6 mg m−2 and av. 29±21 mg m−2, respectively) and primary production (av. 255±94 mgC m−2 d−1 and av. 335±278 mgC m−2 d−1, respectively). During all three periods, diazotropic cyanobacterium Trichodesmium erythraeum dominated in the nutrient depleted surface waters. A general increase in abundance of larger diatoms was evident in the surface waters of the inshore region during monsoon periods. The microzooplankton abundance was found to be significantly higher during the spring intermonsoon (av.241±113×103 ind m−2) as compared to onset of summer monsoon (av. 105±89×103 ind m−2) and peak summer monsoon (av.185±175×103 ind m−2). Microzooplankton community during the spring intermonsoon was numerically dominated by ciliates while heterotrophic dinoflagellate was the dominant ones during the monsoon periods. The high abundance of ciliates during the spring intermonsoon could be attributed to the stratified environmental condition prevailed in the study area which favors high abundance of smaller phytoplankton and cyanobacteria, the most preferred food of ciliates. On the other hand, the dominance of heterotrophic dinoflagellates during the monsoon periods could be linked to their ability to graze larger diatoms which were abundant during the monsoon periods. The overall results show low abundance of microzooplankton in the eastern Arabian Sea during the monsoon periods mainly due to a decline in ciliates abundance. This decline during the monsoon periods could be the result of (a) low abundance of smaller phytoplankton and (b) high stock of mesozooplankton predators (av. 245 ml 100 m−3).  相似文献   

9.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

10.
Spatial variations in the sinking export of organic material were assessed within the Hudson Bay system (i.e., Hudson Bay, Hudson Strait and Foxe Basin) during the second oceanographic expedition of ArcticNet, on board the CCGS Amundsen in early fall 2005. Sinking fluxes of particulate organic material were measured using short-term free-drifting particle interceptor traps deployed at 50, 100 and 150 m for 8–20 h at eight stations. Measurements of chlorophyll a (chl a), pheopigments (pheo), particulate organic carbon (POC), biogenic silica (BioSi), protists, fecal pellets and bacteria were performed on the collected material. In parallel, sea surface salinity and temperature were determined at 121 stations in the Hudson Bay system. Three hydrographic regions presenting different sedimentation patterns were identified based on average surface salinity and temperature. Hudson Strait was characterized by a marine signature, with high salinity (average=32.3) and low temperature (average=2.1 °C). Eastern Hudson Bay was strongly influenced by river runoff and showed the lowest average salinity (26.6) and highest average temperature (7.6 °C) of the three regions. Western Hudson Bay showed intermediate salinity (average=29.4) and temperature (average=4.4 °C). Sinking fluxes of total pigments (chl a+pheo: 3.37 mg m−2 d−1), diatom-associated carbon (19.8 mg m−2 d−1) and BioSi (50.2 mg m−2 d−1) at 50 m were highest in Hudson Strait. Eastern Hudson Bay showed higher sinking fluxes of total pigments (0.52 mg m−2 d−1), diatom-associated carbon (3.29 mg m−2 d−1) and BioSi (36.6 mg m−2 d−1) compared to western Hudson Bay (0.19, 0.05 and 7.76 mg m−2 d−1, respectively). POC sinking fluxes at 50 m were low and relatively uniform throughout the Hudson Bay system (50.0–76.8 mg C m−2 d−1), but spatial variations in the composition of the sinking organic material were observed. A large part (37–78%) of the total sinking POC was unidentifiable by microscopic observation and was qualified as amorphous detritus. Considering only the identifiable material, the major contributors to the POC sinking flux were intact protist cells in Hudson Strait (28%), fecal pellets in eastern Hudson Bay (52%) and bacteria in western Hudson Bay (17%). A significant depth-related attenuation of the POC sinking fluxes (average loss between 50 and 150 m=32%) and a significant increase in the BioSi:POC ratio (average increase between 50 and 150 m=76%) were observed in Hudson Strait and eastern Hudson Bay. For all other sinking fluxes and composition ratios, we found no statistically significant difference with depth. These results show that during fall, the sinking export of total POC from the euphotic zone remained fairly constant throughout the Hudson Bay system, whereas other components of the organic sinking material (e.g., chl a, BioSi, fecal pellets, protist cells) showed strong spatial variations.  相似文献   

11.
The concentrations of chlorophyll-a (chl-a), total suspended solids (TSS) and the absorption coefficient of colored dissolved organic matter (aCDOM(400)) are estimated in Case II waters using medium resolution imaging spectrometer (MERIS) satellite (full resolution [FR] level 1b, 300 m resolution) and AISA airborne spectrometer data acquired during a spring bloom in the Gulf of Finland, Baltic Sea on April 27, 2004. The accuracy of the estimation is analyzed using empirical band-ratio algorithms together with in situ observations that include water samples analyzed in a laboratory (variation ranges: 22–130 μg/l, 2.9–20 mg/l, and 1.29–2.61 m−1 for chl-a, TSS and aCDOM(400), respectively). Additional in situ estimates (transects) on these characteristics are available through absorption and scattering coefficients measured with an ac-9 absorption and attenuation meter installed in a flow-through system. The retrieval accuracy (R2) of all three water quality characteristics with MERIS data is close to or above 0.9, while the RMSE is 7.8 μg/l (22%), 0.74 mg/l (16%) and 0.08 m−1 (5%), for chl-a, TSS and aCDOM(400), respectively. The validity of the chl-a algorithm is tested using nine additional data points. The BIAS-error for these points is 5.2 μg/l and the RMSE is 10.6 μg/l. The effects of changes in the atmospheric characteristics on band-ratio algorithms in cases where no concurrent in situ reference data are available are analyzed using the MODerate spectral resolution atmospheric TRANSmittance algorithm and computer model (MODTRAN). The additional error due to these changes is estimated to be below 20% for the applied ratio algorithms. The water quality data available in the level 2 MERIS-product distributed by the European Space Agency did not include valid results for the date investigated here.  相似文献   

12.
We have numerically modeled evolving fluid pressures and concentrations from a nine-year in situ osmosis experiment in the Pierre Shale, South Dakota. These data were obtained and recently interpreted by one of us (C.E.N.) as indicating a potentially significant role for chemical osmosis in media like the Pierre Shale. That analysis considered only the final pressure differentials among boreholes that were assumed to represent osmotic equilibrium. For this study, the system evolution was modeled using a recently developed transient model for membrane transport. The model simulates hydraulically and chemically driven fluid and solute transport. The results yield an estimate of the thickness of the water film between the clay platelets b of 40 Å, which corresponds to an osmotic efficiency σ of 0.21 for the ambient pore water salinity of 3.5 g/l TDS. These values largely confirm the results of the earlier equilibrium analysis. However, the new model analysis provides additional constraints suggesting that intrinsic permeability k = 1.4 × 10−19 m2, specific storage Ss = 1.7 × 10−5 m−1, and diffusion coefficient D* = 6 × 10−11 m2/s. The k value is larger than certain independent estimates which range from 10−21 to 10−20; it may indicate opening of microcracks during the experiments. The fact that the complex transient pressure and concentration behavior for the individual wells could be reproduced quite accurately, and the inferred parameter values appear to be realistic for the Pierre Shale, suggests that the new model is a useful tool for modeling transient coupled flows in groundwater systems.  相似文献   

13.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

14.
We report new palaeointensity results concerning the Auckland geomagnetic excursions using the double heating technique of the Shaw method with low temperature demagnetisation (LTD-DHT Shaw method). The excursional palaeodirections recorded in six volcanoes of the Auckland volcanic field, New Zealand, have been classified into three groups: north-down (ND), west-up (WU) and south-up (SU) directions. In the present study, five to six consistent palaeointensities have been obtained from each of five volcanoes recording the Auckland geomagnetic excursions. The Wiri (27 ka), Crater Hill and Puketutu volcanoes (ND group) yielded mean palaeointensities of 10.6 ± 1.2 (1σ), 11.8 ± 2.8 and 11.1 ± 0.4 μT, respectively. The Hampton Park volcano (55 ka; WU group) gave 9.5 ± 1.2 μT while the McLennan Hills volcano (SU group) gave 2.5 ± 0.5 μT. It is notable that consistent palaeointensities have been obtained from the three different volcanoes which have almost the same palaeodirections (ND group), possibly supporting the reliability of the palaeointensity data. These five palaeointensities for the Auckland geomagnetic excursions correspond to virtual dipole moments (VDMs) of 0.6-2.1 × 1022 A m2, whereas three mean palaeointensities obtained from the Auckland volcanoes having non-excursional palaeodirections are 13.1-40.0 μT giving stronger VDMs of 2.1-6.9 × 1022 A m2. These results suggest that the dipole component of the geomagnetic field reduced to about 2 × 1022 A m2 or less during the Auckland geomagnetic excursions.  相似文献   

15.
Stratification (throughout the year) and low solar radiation (during monsoon periods) have caused low chlorophyll a and primary production (seasonal average 13–18 mg m−2 and 242–265 mg C m−2 d−1, respectively) in the western Bay of Bengal (BoB). The microzooplankton (MZP) community of BoB was numerically dominated by heterotrophic dinoflagellates (HDS) followed by ciliates (CTS). The highest MZP abundance (average 665±226×104 m−2), biomass (average 260±145 mg C m−2) and species diversity (Shannon weaver index 2.8±0.42 for CTS and 2.6±0.35 for HDS) have occurred during the spring intermonsoon (SIM). This might be due to high abundance of smaller phytoplankton in the western BoB during SIM as a consequence of intense stratification and nitrate limitation (nitracline at 60 m depth). The strong stratification during SIM was biologically evidenced by intense blooms of Trichodesmium erythraeum and frequent Synechococcus–HDS associations. The high abundance of smaller phytoplankton favors microbial food webs where photosynthetic carbon is channeled to higher trophic levels through MZP. This causes less efficient transfer of primary organic carbon to higher trophic levels than through the traditional food web. The microbial food web dominant in the western BoB during SIM might be responsible for the lowest mesozooplankton biomass observed (average 223 mg C m−2). The long residence time of the organic carbon in the surface waters due to the active herbivorous pathways of the microbial food web could be a causative factor for the low vertical flux of biogenic carbon during SIM.  相似文献   

16.
Lake-outlets are transitional areas recognized as highly productive ecosystems in terms of density and biomass of aquatic insects. Life cycle, secondary production, trophic guilds and environmental constraints of caddisfly assemblages were investigated on a natural lake-outlet stream (Nant y Fall) in Patagonia, Argentina. We investigated the site monthly from May 2007 to April 2008 by recording environmental data and sampling caddis larvae using a Surber sampler at riffle areas (n = 36). Mastigoptila longicornuta, Smicridea annulicornis, Smicridea frequens, Brachysetodes quadrifidus and Parasericostoma ovale displayed well synchronized univoltine life cycles, while Neoatopsyche brevispina, Neopsilochorema tricarinatum, showed an asynchronous development pattern, although most of them had an extended recruitment, similar to those reported for non lake-outlet streams in the area. Annual secondary production per species varied from 8.22 (B. quadrifidus) to 3568.83 mg m−2 y−1 (P. ovale), with overall caddisfly production amounting to 4.8 g m−2 y−1. Shredder/collector-filterer ratio was 3.3/1 suggesting that the system was detrital based. Redundancy analysis indicated that seasonally dynamic variables such as discharge, benthic particulate organic matter and temperature were the main predictors of seasonal caddisfly assemblage variation. We propose that the variety of food resources and the significant spatial heterogeneity at lake-outlet streams contribute to sustain a rich caddisfly community.  相似文献   

17.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

18.
19.
We estimated the net annual air–sea exchange of carbon dioxide (CO2) using monitoring data from the East Gotland Sea, Bornholm Sea, and Kattegat for the 1993–2009 period. Wind speed and the sea surface partial pressure of CO2 (pCO2w), calculated from pH, total alkalinity, temperature, and salinity, were used for the flux calculations. We demonstrate that regions in the central Baltic Sea and the Kattegat alternate between being sinks (−) and sources (+) of CO2 within the −4.2 to +5.2 mol m−2 yr−1 range. On average, for the 1994–2008 period, the East Gotland Sea was a source of CO2 (1.64 mol m−2 yr−1), the Bornholm Sea was a source (2.34 mol m−2 yr−1), and the Kattegat was a sink (−1.16 mol m−2 yr−1). Large inter-annual and regional variations in the air–sea balance were observed. We used two parameterizations for the gas transfer velocity (k) and the choice varied the air–sea exchange by a factor of two. Inter-annual variations in pCO2w between summers were controlled by the maximum concentration of phosphate in winter. Inter-annual variations in the CO2 flux and gas transfer velocity were larger between winters than between summers. This indicates that the inter-annual variability in the total flux was controlled by winter conditions. The large differences between the central Baltic Sea and Kattegat were considered to depend partly on the differences in the mixed layer depth.  相似文献   

20.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号