首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Levels of estrogenic compounds in Xiamen Bay sediment, China   总被引:5,自引:0,他引:5  
Concentrations of seven estrogenic compounds, i.e., estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol(EE2), diethylstilbestrol (DES), nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), were determined in sediments and pore water from Xiamen Bay in China, and their distributions and potential risks in the Bay were assessed. Total estrogenic compounds concentrations varied from 49.20 to 1230.69 ng/g dw in sediments and from 102.33 to 4376.60 ng/L in pore water. The highest levels of these compounds were found at Yundang Lagoon. The results showed that estrogenic compounds in Xiamen Bay originated mainly from municipal wastewaters. Compared with other areas, Xiamen Bay was contaminated with high levels of estrogen hormones. This contamination poses a potential threat to benthic organisms. Although a good relationship (r = 0.94) was observed between the estrogenic compounds concentrations and total organic carbon (TOC) contents in sediments, which did not indicate that the sediment organic matter favors the accumulation of the detected estrogenic compounds.  相似文献   

2.
Matrix bound phosphine (MBP), a kind of chemically reduced phosphorus, has received limited attention in prevailing modeling of the phosphorus biogeochemical cycle. MBP has been found to occur in marine sediments. MBP in the sediments of the Yellow Sea and its coastal areas was measured by gas chromatography from 2004 to 2007. MBP levels in surface sediments were 0.19–38.24 ng kg−1 in the shelf of the Yellow Sea, 0.34–17.15 ng kg−1 in the Jiaozhou Bay, 2.11–71.79 ng kg−1 in the Sanggou Bay and 0.28–319.32 ng kg−1 in the rivers around the Jiaozhou Bay. High levels of MBP occurred in the northern and middle areas of the Yellow Sea. Obvious seasonal variation of MBP was observed in surface sediments of the Sanggou Bay, with the highest MBP level occurring in summer and the lowest in winter. MBP in surface sediments of the inner Jiaozhou Bay was higher than those in the outer region. MBP levels increased with depth in the top 5–10 cm sediments of the Jiaozhou Bay and on the intertidal flats. Environmental factors such as type of sediments, temperature, organic matter and human activity were found to affect the concentrations and distribution of MBP in marine sediments.  相似文献   

3.
Elutriate embryo-larval bioassays with sea-urchins (Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation (rM=0.80; p<0.01) between sediment pollutant concentrations and toxicity data profiles. In addition, sediment quality criteria were used to help in the ecological interpretation of sediment chemistry data and to identify pollutants of concern. The toxicity bioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.  相似文献   

4.
The paper analyses the concentrations of total phosphorus and its forms in sediments from the Gulf of Gdańsk on the basis of studies conducted at 25 sampling sites in 2001–05. The phosphorus speciation analysis was performed by sequential extraction. The extensive spatial variability of Ptot concentrations and speciation was found to be dependent on the physicochemical properties of the sediments, the oxygen conditions in the water and sediments, and the depth of the water column above the sediment surface. In the coastal zone, the sedimentation of riverine suspended matter and the sorption and chemisorption processes exert a considerable influence on P speciation. Over 70% of variation of total phosphorus concentration in sediments in the Gulf of Gdańsk could be explained by changes of proportion of fine fraction of sediments (grain size <0.0625 mm). Maximum Ptot concentrations were recorded in clays and silts in the deep water, stratified part of the Gulf of Gdańsk. In the coastal zone, where sandy sediments are dominant, phosphorus concentrations were much lower; this was due to the considerable dynamics of the bottom water and intensive sea floor transport. Ptot concentrations in the Gulf of Gdańsk sediments ranged from 1.75 to 957.17 μmol g−1 d.w. Of all the forms of phosphorus, the highest concentrations were found for organic phosphorus (Org-P). Of its inorganic forms, the highest concentrations were of phosphorus bound to clay minerals and aluminium oxides (NaOH-P), the lowest ones were of loosely bound phosphorus (NaCl-P). On the basis of determinations of total phosphorus concentrations in sediments of a given type and the available data on the seabed areas covered by particular sediment types in the Gulf of Gdańsk, the mass of total phosphorus in the surficial sediment layer (0–2 cm) was estimated at ca. 15.6×103 tonnes.  相似文献   

5.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

6.
Marine sediment may contain both settled phytoplankton and benthic microalgae (BMA). In river-dominated, shallow continental shelf systems, spatial, and temporal heterogeneity in sediment type and water-column characteristics (e.g., turbidity and primary productivity) may promote spatial variation in the relative contribution of these two sources to the sediment organic matter pool available to benthic consumers. Here we use photosynthetic pigment analysis and microscopic examination of sediment microalgae to investigate how the biomass, composition, and degradation state of sediment-associated microalgae vary along the Louisiana (USA) inner shelf, a region strongly influenced by the Mississippi River. Three sandy shoals and surrounding muddy sediments with depths ranging from 4 to 20 m were sampled in April, August, and October 2007. Pigment composition suggested that sediment microalgae were primarily diatoms at all locations. We found no significant differences in sediment chlorophyll a concentrations (8–77 mg m−2) at the shoal and off-shoal stations. Epipelic pennate diatoms (considered indicative of BMA) made up a significantly greater proportion of sediment diatoms at sandy (50–98%) compared to more silty off-shoal stations (16–56%). The percentage of centric diatoms (indicators of settled phytoplankton) in the sediment was highest in August. Sediment total pheopigment concentrations on sandy stations (<20 mg m−2) were significantly lower than concentrations at nearby muddy stations (>40 mg m−2), suggesting differences in sediment microalgal degradation state. These observations suggest that BMA predominate in shallow sandy sediments and that phytodetritus predominates at muddy stations. Our results also suggest that the relative proportion of phytodetritus in the benthos was highest where phytoplankton biomass in the overlying water was greatest, independent of sediment type. The high biomass of BMA found on shoals suggests that benthic primary production on sandy sediments represents a potentially significant local source of sediment microalgal carbon that may be utilized by benthic consumers in continental shelf food webs.  相似文献   

7.
Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86ngkg(-1) dry weight (dw) with an average concentration of 17.14ngkg(-1)dw. The concentrations of MBP in the upper estuary were higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November>August>May>February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle.  相似文献   

8.
The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhône River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhône River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7±0.4 mmol O2 m−2 d−1 at the continental shelf break to 19.3±0.5 mmol O2 m−2 d−1 in front of the Rhône River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhône mouth. The highest oxygen uptake rate was observed at 63 m on the Rhône prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhône River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhône prodelta are enriched in organic carbon (2–2.2%) relative to the continental shelf sediments (<1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r2=0.98, n=4). South-westward of the Rhône River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhône River, sedimentation of marine organic matter and organic material redeposition after resuspension events.  相似文献   

9.
The hyporheic zones constitute a major site of storage of organic matter and energy flow in freshwater ecosystems. To complement the studies carried out in North America and Europe, we evaluated the sediment quality and occurrence of aquatic hyphomycetes in coarse particulate organic matter (CPOM; ≥5 mm) and fine particulate matter (FPM; ≤1 mm) in three locations of Kaiga stream and eight locations of Kadra dam of the River Kali in Western Ghats. The pH of sediments of stream and dam was acidic (5.8-6.6) and the average organic carbon of stream sediments was higher than dam sediments (8.6% vs. 3.9%). Among the eight minerals monitored, Fe was highest in all sediments and Ni was below detectable limit in four dam sediments. Spores of aquatic hyphomycetes were directly released from the CPOM fractions of sediments upon bubble chamber incubation, while the FPM fractions produced spores indirectly by colonization of sterile leaf baits followed by bubble chamber incubation. The species richness and diversity in CPOM was higher than FPM in stream as well as dam sediments. The Sorensen's similarity indices between the fungal flora of CPOM in stream (66.7-81.8%) and dam (69.2-88%) locations were generally higher than FPM. The spore output per mg CPOM was between 1215 (dam) and 3384 (stream). The species richness was negatively correlated with Cr (P < 0.01; r = −1.000) of stream sediments, while it was negatively correlated with organic carbon (P < 0.05; r = −0.740) and positively correlated with K (P < 0.05; r = 0.750) of dam sediments. Occurrence and survival of aquatic hyphomycetes in hyporheic habitats of freshwater bodies indicate the importance of such zones as reservoir of fungal inoculum necessary in fundamental functions such as organic matter processing and energy flow. The present study provides baseline data on the sediment quality and fungal composition of stream and dam locations of River Kali of Kaiga region, which will develop as center of industrial activities in future.  相似文献   

10.
We examined spatial variations in benthic remineralisation (measured as sediment oxygen consumption (SOC)) and sediment properties on the northeastern New Zealand continental shelf and slope to assess the importance of benthic mineralisation in this ecosystem and to provide data for more complete global carbon budgets. SOC measured in dark incubations conducted in early summer ranged from 128 μmol m−2 h−1 at the deepest (360 m) to 1222 μmol m−2 h−1 at the shallowest (4.2 m) site and decreased significantly with water depth (p<0.001, r2=0.78, SOC=1222.8−456.3×log10[water depth], n=14 sites). These rates were in the range found on continental shelves elsewhere (64–1750 μmol m−2 h−1, n=30 studies) and had a very similar distribution with water depth. SOC was also measured in light incubations at seven sites (4.2–35 m water depth) to examine the effects of microphytobenthos and accounted for 42–106% of rates measured in the dark. Measurements of near-bed light intensities suggested that microphytobenthos production was not solely regulated by light intensity but evidently influenced by other factors. A two-dimensional PCA ordination of surface sediment properties accounted for 83.3% of the total variance in the data and divided the study area into three clusters that corresponded well to its spatial division into the shallow (<30 m) Firth of Thames, the Hauraki Gulf (30–50 m) and the northern shelf-slope region. In the Firth of Thames sediments were very fine-grained with low CaCO3 and high total organic matter and pigment content, and low C:N ratios. The northern shelf-slope sediments showed the opposite trends to the Firth of Thames and those in the Hauraki Gulf had mostly intermediate values. Dark SOC was significantly correlated with sediment organic matter, carbon, nitrogen, pigments and silt/clay content (p<0.05, r=0.55–0.85) but a multiple linear regression revealed that water depth was the only significant predictor. Calculations suggest that approximately 13%, 10% and 34% of primary production is remineralised in the sediments of the northern shelf-slope region, Hauraki Gulf and Firth of Thames, respectively, indicating a strong benthic–pelagic coupling on the northeastern New Zealand continental shelf that was particularly pronounced in the Firth of Thames due to its shallow depth and significant terrestrial and riverine inputs.  相似文献   

11.
The ‘Chicken Creek’ artificial catchment area, Welzow-South, E Germany, created to study processes and structures of initial ecosystem development, discharges into a small experimental lake (A=3805 m2, V=3992 m3, zmax=2.4 m). This lake was man-made in 2005 and filled by natural surface runoff until January 2006. In summer 2006 and 2008, the actual development of sediments and the evolution of the phosphorus (P) cycle were studied. 19.7% of the original lake volume was filled by sediment within the first 3 years. A fine-grained sediment representing silt (6.3-63 μm) accumulated at high accretion rates at the deepest point (200 mm a−1, 0-24 mm week−1) due to massive erosion in the catchment. The sediment is low in organic matter (2.5-5.2%) and total P (TP, 0.31-0.97 mg g−1). Low amounts of P associated with degradable organic matter and surplus of metal hydroxides (Fe:P∼40, Al:P∼20) favor an efficient P binding and low dissolved P concentrations in pore water (1-107 μg l−1). Hence, the mineral sediment quality and the low rates of P release (0.06 mg m−2 d−1) revealed that a lake at an initial stage of development has essentially no sedimentary P cycle compared to eutrophic shallow lakes. However, the increasing emersed and submersed macrophyte growth will control further lake succession by intensifying the internal nutrient cycling. The macrophytes drive the evolution of a sedimentary P cycle by mobilizing and translocating P, by accumulating carbon and thus by stimulating microbial and redox processes.  相似文献   

12.
This study investigated the concentrations and distribution of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in sediments of 12 rivers from South Bohai coastal watersheds. The highest concentrations of ΣPFAS (31.920 ng g1 dw) and PFOA (29.021 ng g1 dw) were found in sediments from the Xiaoqing River, which was indicative of local point sources in this region. As for other rivers, concentrations of ΣPFAS ranged from 0.218 to 1.583 ng g1 dw were found in the coastal sediments and from 0.167 to 1.953 ng g1 dw in the riverine sediments. Predominant PFAS from coastal and riverine areas were PFOA and PFBS, with percentages of 30% and 35%, respectively. Partitioning analysis showed the concentrations of PFNA, PFDA and PFHxS were significantly correlated with organic carbon. The results of a preliminary environmental hazard assessment showed that PFOS posed the highest hazard in the Mi River, while PFOA posed a relative higher hazard in the Xiaoqing River.  相似文献   

13.
Cadmium (Cd) concentrations in the coastal United States were assessed using the National Status and Trends (NS&T) Mussel Watch dataset, which is based on the analysis of sediments and bivalves collected from 280 sites since 1986. Using the 1997 sediment data, Pearson correlation (r = 0.44, p < 0.0001) suggested that Cd distributions in sediment can, be to some extent, explained by the proximity of sites to population centers. The 2003 tissue data indicated that “high” Cd concentrations (greater than 5.6 μg/g dry weights [dw] for mussel and 5.4 μg/g dw for oysters) were related to salinity along the East and Gulf coasts. Along the West coast, however, these “high” sites appeared to be related to upwelling phenomenon. Additionally, sedimentary diagenesis was found to be the most likely explanation of why sediment and mollusk Cd content were not well correlated.  相似文献   

14.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

15.
This study is the first to measure the particulate phosphorus, including total inorganic phosphorus (TIP) and organic phosphorus (OP), in size-fractionated atmospheric particles. The results indicate that continental and marine sources are the key controls on the particle-size distribution of phosphorus species. For continental and local anthropogenic sources, both TIP and OP are associated with fine-mode aerosols during the winter and spring, and both are also associated with coarse particles during the summer and autumn. The coarse/fine ratios are low during periods with a non-oceanic source but high at other times, probably because of the biological growing season in the surface waters of the study area. The calculated annual fluxes based on estimates of dual-mode particles are 532±185, 435±172, and 96.8±48.8 μmol m−2 yr−1 for TP, TIP, and OP, respectively. Based on previously published solubility data for particulate phosphorus (34%), we calculated an annual flux of 180±63 μmol m−2 yr−1 for readily soluble particulate phosphorus.  相似文献   

16.
The distribution and bioaccumulation features of PCBs, DDTs, and HCHs were investigated in the sediments and Manila clams collected from along the Mid-Western coast of Korea. The measured concentrations of ΣPCBs, ΣDDTs and ΣHCHs were 1.08–3.5, 0.12–0.35 and 0.090–0.30 ng g1 dw in sediment, and 33–390, 7.4–46 and 6.3–27 ng g1 lipid in Manila clam, respectively. Their levels were found to be relatively lower than those of other contaminated areas and the consumption of Manila clam from these areas seems to be safe for human health according to calculated lifetime cancer risk and hazard indices. The ΣPCBs and ΣDDTs concentrations in sediments showed a significant relationship to those in clams. The significant correlation was observed between BSAF in clams and Kow for each PCB congeners and DDT metabolites. These findings support that the PCBs and DDTs levels, which are highly hydrophobic chemicals, in clam reflect the sediment pollution through bioaccumulation.  相似文献   

17.
Copper-based antifoulant paints and the sea lice treatment Slice® are widely used, and often detectable in the sediments beneath farms where they are administered. Ten-day, whole sediment mesocosm experiments were conducted to examine how increasing sediment concentrations of copper or Slice® influenced final water column concentrations of ammonium-nitrogen (NH4-N), nitrate + nitrite-nitrogen (NOX-N) and phosphate-phosphorus (PO4-P) in the presence of the non-target, benthic organisms Corophium volutator and Hediste diversicolor. Nominal sediment concentrations of copper and Slice® had significant effects on the resulting concentrations of almost all nutrients examined. The overall trends in nutrient concentrations at the end of the 10-day incubations were highly similar between the trials with either copper or Slice®, irrespective of the invertebrate species present. This suggests that nutrient exchange from the experimental sediments was primarily influenced by the direct effect of copper/Slice® dose on the sediment microbial community, rather than the indirect effect of reduced bioturbation/irrigation due to increased macrofaunal mortality.  相似文献   

18.
南四湖是南水北调东线最大的调蓄湖泊,周期性水位涨落会形成大面积消落带,认知消落带底泥磷形态赋存特征、影响因素及释放潜能,对于保障东线调水水质具有重要的科学意义.本研究分析了南四湖消落带底泥磷形态分布特征,探讨了各形态磷与土地利用、母质类型及底泥理化因素之间的关系,评价了南四湖消落带底泥磷的污染程度并分析了其释放风险.结果发现,消落带底泥中总磷(TP)、无机磷(IP)、NaOH提取态磷(NaOH-P)、HCl提取态磷(HCl-P)和有机磷(OP)含量的平均值分别为745.37、510.51、50.42、460.09和234.86 mg/kg,以HCl-P为主的IP占比较高.南四湖消落带底泥各形态磷含量具有较高的空间异质性,TP、IP、OP、HCl-P和NaOH-P含量的变异系数分别为30.7%、36.9%、29.6%、37.6%和51.2%.自然湿地、乔木林地和水浇地等土地利用方式下的底泥NaOH-P、HCl-P、IP、OP和TP含量差异不显著.土壤类型对消落带底泥OP含量影响明显,但对TP、IP、NaOH-P和HCl-P含量则影响不大.NaOH-P含量与HCl-P含量具有显著正相关,与OP含量则具有极显著正相关.南四湖周边30多km2消落带底泥磷污染程度相对较高,轻度、中度和重度污染底泥分别占5.9%、76.5%和17.6%,部分区域底泥磷释放潜能较高.研究结果可为南四湖消落带内源磷释放控制以及水质保障提供科技支撑.  相似文献   

19.
Anomalously high levels of mercury in sediment in the Lenga estuary, Chile are comparable to the most contaminated sites previously reported elsewhere. Total mercury (Hgtotal) concentrations range from 0.5 to 129 mg kg−1 and organic mercury (Hgorg) from 11 to 53 μg kg−1. The highest levels are in areas near the previous wastewater outfall of a chlo-alkali plant. The results show that the proportion of Hgorg/Hgtotal in the sediment varies by more than two orders of magnitude (0.02–5.7%) according to the concentration of Hgtotal. No correlation between the concentration of Hgorg and Hgtotal was found. The lack of correlation does contrast with the findings of other authors in culture media. Our results indicate that even at very high concentrations of Hgtotal and organic matter do not influence organic mercury formation in estuary sediments. The disparity in Hgtotal and Hgorg concentrations also attests to environmental differences in the formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号