首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sydney Water has completed a risk assessment to assess the risks to human health and aquatic organisms in creeks, rivers, estuaries and ocean waters affected by wet weather sewage overflows, stormwater and sewage treatment plant discharges. The risk assessment methodology consists of a comparison of measured and predicted concentrations of chemicals with toxicity reference values. Estimates of receiving water chemical concentrations were derived using data from a 10-year period so that the variable rainfall pattern was represented. Computer models were used to simulate and predict wet weather discharges during this ten year period. Risks were validated by bioassays and bioassessments. Risks to aquatic life from wet weather discharges were attributed to 14 chemicals at one or more of the sites and stormwater was the predominate source of the chemicals. There were no risks to people engaged in water based activities. Noncarcinogenic risks from fish ingestion are predicted at three sites. Predicted cancer risks for most individual chemicals were relatively small. Carcinogenic risks were typically associated with organochlorine compounds, polycyclic aromatic hydrocarbons, dichlorobenzene, and arsenic. The predicted cancer risks also appear to be largely the result of stormwater rather than sewage overflow inputs and largely due to historical contamination by organochlorine pesticides. It is expected the concentrations of these chemicals will decrease over time.  相似文献   

2.
Programs for evaluating proposed discharges of dredged material into waters of the United States specify a tiered testing and evaluation protocol that includes performance of acute and chronic bioassays to assess toxicity of the dredged sediments. Although these evaluations reflect the toxicological risks associated with disposal activities to some degree, analysis activities are limited to the sediments of each dredging project separately. Cumulative risks to water column and benthic organisms at and near the designated disposal site are therefore difficult to assess. An alternate approach is to focus attention on the disposal site, with the goal of understanding more directly the risks of multiple disposal events to receiving ecosystems. Here we review current US toxicity testing and evaluation protocols, and describe an application of ecological risk assessment that allows consideration of the temporal and spatial components of risk to receiving aquatic ecosystems. When expanded to include other disposal options, this approach can provide the basis for holistic management of dredged material disposal.  相似文献   

3.
Thirty-five years of research in New England indicates that ocean disposal of dredged material has minimal environmental impacts when carefully managed. This paper summarizes research efforts and resulting conclusions by the US Army Corps of Engineers, New England District, beginning with the Scientific Report Series and continuing with the Disposal Area Monitoring System (DAMOS). Using a tiered approach to monitoring and a wide range of tools, the DAMOS program has monitored short- and long-term physical and biological effects of disposal at designated disposal sites throughout New England waters. The DAMOS program has also helped develop new techniques for safe ocean disposal of contaminated sediments, including capping and confined aquatic disposal (CAD) cells. Monitoring conducted at many sites in New England and around the world has shown that impacts are typically near-field and short-term. Findings such as these need to be disseminated to the general public, whose perception of dredged material disposal is generally negative and is not strongly rooted in current science.  相似文献   

4.
This study provides a holistic perspective on the ecological effects of dredged material disposal, both intertidally and subtidally. A number of numerical techniques (univariate, distributional, multivariate and meta-analysis) were used to assess impacts at 18 different disposal sites. The analyses revealed that ecological effects associated with dredged material disposal were dependent on the numerical techniques used, and that impacts were disposal-site specific. Disposal-site communities were generally faunistically impoverished to varying degrees, and impacts following intertidal placement were comparable to those of subtidal placement. We conclude that any assessment of the consequences of dredged material disposal to the coastal environment must take account of site-specific variation in prevailing hydrographic regimes and in ecological status, along with information on the disposal activity itself (mode, timing, quantity, frequency and type of material). As would be expected, variability in the latter presents a significant challenge in attempts to generalise about environmental and ecological impacts.  相似文献   

5.
Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.  相似文献   

6.
The tannery industry influences the gross domestic product/economic activity of any country, but the uncontrolled release of tannery effluents causes environmental degradation and increases health risks to human. The reason for the toxicity of tannery effluents is the presence of high concentrations of organic and inorganic chemicals used in the production of leather goods. Untreated or partially treated effluents discharged into surface water results in an increase in both chemical and biological oxygen demand as well as in an increase in the levels of total suspended solids, dissolved solids, and toxic metals in environmental bodies, especially in soil, water bodies, and water sediments. Various treatment techniques, such as physicochemical, biological, and advanced oxidation methods, which include chemical precipitation, electrocoagulation, aerobic or anaerobic treatment, wetland construction, and Fenton, electro-Fenton, and photo-Fenton processes are also described. This review also discusses the technical appropriateness and economic feasibility of reducing the effluent pollution load and solid waste emanating from the tannery industry. Considering the enhanced health risks in the tannery waste treatment and management regime, some green and advanced technologies should be explored. A sustainable green technology that avoids the use of toxic chemicals in the tanning process is seen well for ecological health.  相似文献   

7.
The inhibition of marine nitrification by ocean disposal of carbon dioxide   总被引:1,自引:0,他引:1  
In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.  相似文献   

8.
One of the key environmental concerns about shrimp farming is the discharge of waters with high levels of nutrients and suspended solids into adjacent waterways. In this paper we synthesize the results of our multidisciplinary research linking ecological processes in intensive shrimp ponds with their downstream impacts in tidal, mangrove-lined creeks. The incorporation of process measurements and bioindicators, in addition to water quality measurements, improved our understanding of the effect of shrimp farm discharges on the ecological health of the receiving water bodies. Changes in water quality parameters were an oversimplification of the ecological effects of water discharges, and use of key measures including primary production rates, phytoplankton responses to nutrients, community shifts in zooplankton and delta15N ratios in marine plants have the potential to provide more integrated and robust measures. Ultimately, reduction in nutrient discharges is most likely to ensure the future sustainability of the industry.  相似文献   

9.
Global climate change is a qualitatively distinct, and very significant, addition to the spectrum of environmental health hazards encountered by humankind. Historically, environmental health concerns have focused on toxicological or microbiological risks to health from local exposures. However, the scale of environmental health hazards is today increasing; indeed, the burgeoning human impact on the environment has begun to alter global biophysical systems (such as the climate system). As a consequence, a range of larger-scale environmental hazards to human population health has emerged. This includes the health risks posed by climate change, stratospheric ozone depletion, loss of biodiversity, stresses on terrestrial and ocean food-producing systems, changes in hydrological systems and the supplies of freshwater, and the global spread of persistent organic pollutants. Appreciation of this scale and type of influence on human health entails an ecological perspective — a perspective that recognises that the foundations of long-term good health in populations reside in the continued stability and functioning of the biosphere's "life-supporting" ecological and physical systems. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
Polycyclic musks in green-lipped mussels (Perna viridis) from Hong Kong   总被引:1,自引:0,他引:1  
Six polycyclic musk compounds [Cashmeran (DPMI), Celestolide (ADBI), Phantolide (AHMI), Traseolide (ATII), Tonalide (AHTN), and Galaxolide (HHCB)] were analysed in marine green-lipped mussels (Perna viridis) from Hong Kong. ADBI, HHCB and AHTN were detected in almost all samples, while AHMI, ATII and DPMI were not detected. Concentrations of ADBI, HHCB and AHTN in mussels ranged from below detection limit-0.0743 (mean: 0.0246), 0.247-6.08 (mean: 1.15) and 0.0591-0.738 (mean: 0.190)mg/kg lipid weight, respectively. Mussels from two sampling sites in central Victoria Harbour contained the highest total polycyclic musk levels, suggesting that these waters are heavily influenced by domestic sewage. Concentrations of HHCB and AHTN detected in the mussel samples were the second highest and the highest levels, respectively, compared to global concentrations. A preliminary risk assessment indicated that HHCB and AHTN in mussels pose little or no threat to the health of shellfish consumers. Nevertheless, more comprehensive studies are required to further assess the ecological and human health risks associated with polycyclic musks.  相似文献   

11.
CO2 injection into deep saline formations as a way to mitigate climate change raises concerns that leakage of saline waters from the injection formations will impact water quality of overlying aquifers, especially underground sources of drinking water (USDWs). This paper aims to characterize the geochemical composition of deep brines, with a focus on constituents that pose a human health risk and are regulated by the U.S. Environmental Protection Agency (USEPA). A statistical analysis of the NATCARB brine database, combined with simple mixing model calculations, show total dissolved solids and concentrations of chloride, boron, arsenic, sulfate, nitrate, iron and manganese may exceed plant tolerance or regulatory levels. Twelve agricultural crops evaluated for decreased productivity in the event of brine leakage would experience some yield reduction due to increased TDS at brine‐USDW ratios of < 0.1, and a 50% yield reduction at < 0.2 brine‐USDW ratio. A brine‐USDW ratio as low as 0.004 may result in yield reduction in the most sensitive crops. The USEPA TDS secondary standard is exceeded at a brine fraction of approximately 0.002. To our knowledge, this is the first study to consider agricultural impacts of brine leakage, even though agricultural withdrawals of groundwater in the United States are almost three times higher than public and domestic withdrawals.  相似文献   

12.
Southern California is an increasingly urbanized hotspot for surfing, thus it is of great interest to assess the human illness risks associated with this popular ocean recreational water sport from exposure to fecal bacteria contaminated coastal waters. Quantitative microbial risk assessments were applied to eight popular Southern California beaches using readily available enterococcus and fecal coliform data and dose-response models to compare health risks associated with surfing during dry weather and storm conditions. The results showed that the level of gastrointestinal illness risks from surfing post-storm events was elevated, with the probability of exceeding the US EPA health risk guideline up to 28% of the time. The surfing risk was also elevated in comparison with swimming at the same beach due to ingestion of greater volume of water. The study suggests that refinement of dose-response model, improving monitoring practice and better surfer behavior surveillance will improve the risk estimation.  相似文献   

13.
《Marine pollution bulletin》2009,58(6-12):373-380
Six polycyclic musk compounds [Cashmeran (DPMI), Celestolide (ADBI), Phantolide (AHMI), Traseolide (ATII), Tonalide (AHTN), and Galaxolide (HHCB)] were analysed in marine green-lipped mussels (Perna viridis) from Hong Kong. ADBI, HHCB and AHTN were detected in almost all samples, while AHMI, ATII and DPMI were not detected. Concentrations of ADBI, HHCB and AHTN in mussels ranged from below detection limit–0.0743 (mean: 0.0246), 0.247–6.08 (mean: 1.15) and 0.0591–0.738 (mean: 0.190) mg/kg lipid weight, respectively. Mussels from two sampling sites in central Victoria Harbour contained the highest total polycyclic musk levels, suggesting that these waters are heavily influenced by domestic sewage. Concentrations of HHCB and AHTN detected in the mussel samples were the second highest and the highest levels, respectively, compared to global concentrations. A preliminary risk assessment indicated that HHCB and AHTN in mussels pose little or no threat to the health of shellfish consumers. Nevertheless, more comprehensive studies are required to further assess the ecological and human health risks associated with polycyclic musks.  相似文献   

14.
湖泊疏浚堆场淤泥污染及潜在生态风险评价   总被引:1,自引:0,他引:1  
疏浚淤泥内通常含有不同类型的有毒有害物质,在堆场直接堆放过程中可能会对周围环境产生有害影响.本文针对太湖及巢湖相应疏浚堆场内淤泥进行研究,探讨淤泥中重金属、多环芳烃以及多氯联苯等污染物含量及潜在生态风险;根据重金属的风险指数法和持久性有机污染物的风险商法,对各污染物的潜在生态风险进行定量分析.研究结果表明,太湖白旄堆场以及孔湾堆场淤泥内重金属及多环芳烃含量较小,潜在生态风险较低;巢湖南庄堆场淤泥内各类有害物质含量较大,种类较多,对于周围环境具有较高的潜在生态威胁.多氯联苯则在各个疏浚堆场淤泥中具有很高的积累量,潜在生态风险较高,应引起管理者的重视.  相似文献   

15.
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. δ15N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis.  相似文献   

16.
While ocean circulation is driven by the formation of deep water in the North Atlantic and the Circum-Antarctic, the role of southern-sourced deep water formation in climate change is poorly understood. Here we address the balance of northern- and southern-sourced waters in the South Atlantic through the last glacial period using neodymium isotope ratios of authigenic ferromanganese oxides in thirteen deep sea cores from throughout the South Atlantic. The data indicate that northern-sourced water did not reach the Southern Ocean during the late glacial, and was replaced by southern-derived intermediate and deep waters. The high-resolution neodymium isotope record (~ 300 yr sample spacing) from two spliced deep Cape Basin sites indicates that over the last glacial period northern-sourced water mass export to the Southern Ocean was stronger during the major Greenland millennial warming intervals (and Southern Hemisphere cool periods), and particularly during the major interstadials 8, 12, and 14. Northern-sourced water mass export was weaker during Greenland stadials and reached minima during Heinrich Events. The benthic foraminiferal carbon isotopes in the same Cape Basin core reflect a partial control by Southern Hemisphere climate changes and indicate that deep water formation and ventilation occurred in the Southern Ocean during major Greenland cooling intervals (stadials). Together, neodymium isotopes and benthic carbon isotopes provide new information about water mass sourcing and circulation in deep Southern Ocean waters during rapid glacial climate changes. Combining carbon and neodymium isotopes can be used to monitor the relative proportion of northern- and southern-sourced waters in the Cape Basin to gain insight into the processes which control the carbon isotopic composition of deep waters. In this study we show that deep water formation and circulation was more important than biological productivity and nutrient regeneration changes for controlling the carbon isotope chemistry of Antarctic Bottom Water during millennial-scale glacial climate cycles. This observation also lends support to the hypothesis that ocean circulation is linked to interhemispheric climate changes on short timescales, and that ventilation in the glacial ocean rapidly switched between the northern and Southern Hemisphere on millennial timescales.  相似文献   

17.
Port Curtis is one of Australia's leading ports for which substantial industrial expansion is proposed over the next decade. However, there has been little attempt to date to assess the extent of contamination in waters, sediments and biota or to characterize the potential impacts of contaminants on aquatic biota. Contaminants of potential concern to biota and human health were investigated in the Port Curtis estuary using a screening-level risk assessment approach. Dissolved metal concentrations in waters were below [ANZECC/ARMCANZ, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Vol. 1. The Guidelines, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand] trigger values, suggesting low risk of these contaminants. In sediments, arsenic, nickel and chromium concentrations exceeded interim sediment quality guidelines-low (ISQG-low), but were also high in the reference zone suggesting a natural origin. Historical data on naphthalene in Harbour sediments showed that it was also of potential concern. Bioaccumulation of contaminants in a range of biota was also used as an indicator of contaminant exposure. Biota were generally enriched in metals and tributyltin, which was also elevated in water and sediments. Although not unique to Port Curtis, mercury in barramundi was identified as a potential risk to human health.  相似文献   

18.
Six polycyclic musk compounds [Cashmeran (DPMI), Celestolide (ADBI), Phantolide (AHMI), Traseolide (ATII), Tonalide (AHTN), and Galaxolide (HHCB)] were analysed in marine green-lipped mussels (Perna viridis) from Hong Kong. ADBI, HHCB and AHTN were detected in almost all samples, while AHMI, ATII and DPMI were not detected. Concentrations of ADBI, HHCB and AHTN in mussels ranged from below detection limit–0.0743 (mean: 0.0246), 0.247–6.08 (mean: 1.15) and 0.0591–0.738 (mean: 0.190) mg/kg lipid weight, respectively. Mussels from two sampling sites in central Victoria Harbour contained the highest total polycyclic musk levels, suggesting that these waters are heavily influenced by domestic sewage. Concentrations of HHCB and AHTN detected in the mussel samples were the second highest and the highest levels, respectively, compared to global concentrations. A preliminary risk assessment indicated that HHCB and AHTN in mussels pose little or no threat to the health of shellfish consumers. Nevertheless, more comprehensive studies are required to further assess the ecological and human health risks associated with polycyclic musks.  相似文献   

19.
The system assessment capability (SAC) is the first total-system stochastic simulator to address inventory distribution, environmental release and transport, and impacts to human health and ecological, economic, and cultural resources from hundreds of radiological and chemical waste disposal sites for the entire Hanford Site in southeast Washington State. Flow and contaminant transport modeling in the vadose zone at 720 individual sites has been integrated into the SAC stochastic software framework using the STOMP code, providing the means to define release to the regional aquifer to support the SAC groundwater transport model. Important features, events, and processes including remedial actions, time-variant natural infiltration rates, and high volume aqueous-phase discharges were addressed in the software and data. A separate data extraction program, VZGRAB, was developed to enable analysts to aggregate vadose zone release data across the hundreds of waste sites in various ways following a SAC simulation to develop an improved understanding of the system performance and uncertainty aspects.  相似文献   

20.
The effects from two winter rain storms on the coastal ocean of the Southern California Bight were examined as part of the Bight ‘03 program during February 2004 and February–March 2005. The impacts of stormwater from fecal indicator bacteria, water column toxicity, and nutrients were evaluated for five major river discharges: the Santa Clara River, Ballona Creek, the San Pedro Shelf (including the Los Angeles, San Gabriel, and Santa Ana Rivers), the San Diego River, and the Tijuana River. Exceedances of bacterial standards were observed in most of the systems. However, the areas of impact were generally spatially limited, and contaminant concentrations decreased below California Ocean Plan standards typically within 2–3 days. The largest bacterial concentrations occurred in the Tijuana River system where exceedances of fecal indicator bacteria were noted well away from the river mouth. Maximum nitrate concentrations (~40 μM) occurred in the San Pedro Shelf region near the mouth of the Los Angeles River. Based on the results of general linear models, individual sources of stormwater differ in both nutrient concentrations and the concentration and composition of fecal indicator bacteria. While nutrients appeared to decrease in plume waters due to simple mixing and dilution, the concentration of fecal indicator bacteria in plumes depends on more than loading and dilution rates. The relationships between contaminants (nutrients and fecal indicator bacteria) and plume indicators (salinity and total suspended solids) were not strong indicating the presence of other potentially important sources and/or sinks of both nutrients and fecal indicator bacteria. California Ocean Plan standards were often exceeded in waters containing greater than 10% stormwater (<28–30 salinity range). The median concentration dropped below the standard in the 32–33 salinity range (1–4% stormwater) for total coliforms and Enterococcus spp. and in the 28–30 salinity range (10–16% stormwater) for fecal coliforms. Nutrients showed a similar pattern with the highest median concentrations in water with greater than 10% stormwater. Relationships between colored dissolved organic matter (CDOM) and salinity and between total suspended solids and beam attenuation indicate that readily measurable, optically active variables can be used as proxies to provide at least a qualitative, if not quantitative, evaluation of the distribution of the dissolved, as well as the particulate, components of stormwater plumes. In this context, both CDOM absorption and the beam attenuation coefficient can be derived from satellite ocean color measurements of inherent optical properties suggesting that remote sensing of ocean color should be useful in mapping the spatial areas and durations of impacts from these contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号