首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
The water accommodated fractions (WAFs) of nine oils in seawater have been studied. The oils range from light condensate to heavy crude, and include one highly biodegraded oil and one very wax rich oil. This study has identified large variations in the chemical composition of WAFs, depending on oil type, temperature, and mixing time. Experiments at different temperatures (2-13 °C) showed that it takes longer time to reach equilibrium at the lowest temperatures, and that this varies for the different oil types. Oils with higher pour point (wax rich oils) need a longer time to establish WAF in equilibrium than oils with lower pour points (naphthenic oils). At 13 °C a mixing time of 48 h, as recommended in standard procedures, seems to be sufficient for asphalthenic and paraffinic oils. The results demonstrated that for WAF prepared from an unknown oil, or at lower temperatures, different mixing times should be tested. Since the WAF often is used in toxicity testing, the toxicity might be underestimated if the mixing time is too short.  相似文献   

2.
The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p < 0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 °C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 °C), and under regular wave conditions at all temperatures (10-17 °C), with DDE < 15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD ? 200 μm), whereas ineffective dispersion produced large oil droplets (with VMD ? 400 μm).  相似文献   

3.
Laboratory Experiments for Describing the Migration of Explosives in Sandy Aquifers Leaching the munition residues from the former explosive production site Elsnig in the Upper Elbe Valley (Saxony, Germany) resulted in an undefined plume of groundwater contaminated by nitroaromatics and nitroamines approaching important drinking water resources. Laboratory experiments were carried out to investigate transport and fate phenomena of such substances in aquifer materials. Specific solute storage and migration parameters for modelling the subsurface migration processes were obtained from steady state experiments in soil cores used as 0-dimensional reactors and from dynamic breakthrough curves in soil columns. Using the 0-dimensional reactor tests we focused on isotherm estimation. Sorption was found to be reflected best by Freundlich isotherms for concentrations of nitroaromatics less than 10 mg L?1 and low organic carbon content in the tested subsurface material. TNT-adsorption was slow and strongly correlated with soil permeability. Preliminary kinetic measurements revealed sorption equilibrium after two days. RDX-adsorption was low. All sorption experiments were conducted under non-sterile and aerobic conditions. Microbial activity was controlled by measuring the enzyme activity and the biomass in water and soil samples. After steady state experiments in the 0-dimensional reactors, products initiated by biodegradation of explosives such as aminonitrotoluenes were found. Based on literature, degradation was estimated and correlated with soil texture. For five components, different retardation was observed depending on soil texture by using native groundwater samples in the columns. Specially designed reactor facilities and soil column installations with temperature and flux control as well as on-line measurements of pH, pE, and conductivity were applied. Concentrations of contaminants were analysed both by high performance liquid chromatography and thin layer chromatography. Photolytic reactions have been prevented. Based on all these laboratory experiments, sorption, degradation, and retardation parameters of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), dinitrobenzene (DNB), dinitrotoluene (DNT), and mononitrotoluene (MNT) in Elsnig sandy aquifers were estimated.  相似文献   

4.
Hazardous electric arc furnace dust containing dioxins/furans and heavy metals is blended with harbor sediment, fired at 950–1100 °C to prepare lightweight aggregates. Dust addition can lower the sintering temperature by about 100 °C, as compared to a typical industrial process. After firing at 950 °C and 1050 °C, more than 99.85% of dioxins/furans originally present in the dust have been removed and/or destructed in the mix containing a dust/sediment ratio of 50:100. The heavy metals leached from all fired mixes are far below Taiwan EPA legal limits. The particle density of the lightweight aggregates always decreases with increasing firing temperature. Greater addition of the dust results in a considerably lower particle density (mostly <2.0 g cm−3) fired at 1050 °C and 1100 °C. However, firing at temperatures lower than 1050 °C produces no successful bloating, leading to a denser particle density (>2.0 g cm−3) that is typical of bricks.  相似文献   

5.
The sorption behavior of nonylphenol (NP, a toxic endocrine disruptor) on marine sediments was studied in detail through a series of kinetic and thermodynamic sorption experiments. The results showed that the sorption reaction of NP on marine sediments reached equilibrium in 1.5 h and that it accorded well with the non-linear Ho-McKay pseudo-second-order model. The sorption isotherms of NP on H2O-treated sediments could be well described by the Linear isotherm model, while the sorption isotherm on H2O2-treated sediments could be well fitted with the Freundlich isotherm model. A positive correlation was found between the distribution coefficient (Kd) and the sediment organic carbon contents. The medium salinity showed a positive relation with the Kd and a negative relation with the dissolved organic carbon (DOC). Hexadecyl trimethyl ammonium bromide (CTAB) enhanced the sorption amount of NP the most, while sodium dodecylbenzenesulfonate (SDBS) enhanced it the least. The sorption reaction of NP on marine sediments was a spontaneous, physical, exothermic and entropy-decreasing process.  相似文献   

6.
Phosphorus sorption capacity was investigated in surface sediments derived from an abandoned zinclead mine area located in northeastern Algeria. The forms and the distribution of phosphorus in the raw sediment were identified using the sequential chemical extractions method. Batch experiments were done to study the adsorption kinetics and isotherms. The pH effect was evaluated by macroscopic and infrared analyses. In raw sediment, speciation results show that phosphorus is dominantly bound to oxyhydroxides. Sorption experiments demonstrate that phosphorus uptake is principally related to sediment composition. The nature of the dominant iron oxyhydroxide has a substantial role in the adsorption capacity and the mechanism interaction. The adsorption kinetics can be described by the second order and Elovich models. The isotherms data are successfully modeled by the Temkin equation.The maximum phosphorus removal is reached under acidic pH. Spectroscopic analyses reveal that the predominance of jarosite implies electrostatic interaction with sediment particles. However, in the case of schwertmannite predominance, phosphate ions are adsorbed by the ligand exchange mechanism.  相似文献   

7.
This study evaluated the adsorptive properties of dibutyl phthalate (DBP) on room temperature ionic liquid (RTIL) modified XAD‐4 resin. The modified RTIL‐XAD 4 sorbent was characterized by FTIR. Effect of varying experimental conditions such as pH, contact time, temperature, shaking speed, concentrations, and interfering species were investigated by batch adsorption experiments. Adsorption was found to be most favorable at pH 6 within 30 min. Experimental data were evaluated in terms of kinetic, equilibrium, and thermodynamic modeling. Kinetics of the sorption was found to follow pseudo second order rate equation whereas Freundlich and D–R isotherms were the most suitable models to explain sorption phenomenon. Thermodynamically sorption was endothermic, irreversible, and spontaneous in nature.  相似文献   

8.
Cao X  Han H  Yang G  Gong X  Jing J 《Marine pollution bulletin》2011,62(11):2370-2376
The sorption behavior of p,p′- and o,p′-dichlorodiphenyltrichloroethane (DDT) in the presence of a cationic surfactant cetyltrimethylammonium bromide (CTAB) on sediment was studied. Batch experiments were carried out to investigate the kinetics and thermodynamics of the process. The kinetic behavior of these three chemicals on sediment was described by pseudo-second-order kinetic equations, and the isotherms followed the Freundlich model well. The presence of CTAB was able to remarkably accelerate and enhance the sorption of DDT, whereas DDT showed no effect on the sorption of CTAB in our considered concentration ranges. The thermodynamic parameters, such as standard enthalpy change (ΔH0), standard entropy change (ΔS0) and standard Gibbs free energy change (ΔG0) showed that the sorption process of p,p′- and o,p′-DDT was physical, spontaneous and exothermic, and the randomness at the solid-liquid interface increased during the process. In the presence of CTAB, the sorption of DDT showed significantly negative ΔG0 and ΔH0 values.  相似文献   

9.
Sorption behavior of Lanaset Red (LR) G on lentil straw (LS) was studied as a function of particle size, adsorbent dose, initial pH value, initial dye concentration, and contact time. Sorption kinetics data was well described by logistic model. Modified logistic equation can be used to explain effects of initial dye concentrations and contact time on the sorption of LR G with high R2 value. Freundlich model was found to be excellent in representing the equilibrium data. Thermodynamic parameters like free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were calculated by the use of Langmuir constant. Thermodynamic data showed that the sorption processes were spontaneous and endothermic in nature. Desorption process suggested that strong binding and weak interactions could be formed between adsorbent surface and dye molecules. Results revealed that LS has a remarkable potential for the sorption of LR G.  相似文献   

10.
Sorption of dissolved Fe2+ on bentonite was studied using a batch technique. The distribution coefficient, Kd , was evaluated for a bentonite-iron system as a function of contact time, pH, sorbent and sorbate concentrations, and temperature. Sorption results were interpreted in terms of Freundlich's and Langmuir's equations. Thermodynamic parameters for the sorption system were determined at three temperatures: 298°, 308°, and 318°K. The values of ΔH°(-4.0 kjmol−1) and ΔG°(-2.46 Kjmol−1) at 298°K (25°C) suggest that sorption of iron on bentonite is an exothermic and a spontaneous process. The ΔG° value became less negative at higher temperatures and, therefore, less iron was sorbed at higher temperatures. The desorption studies with 0.01 M CaCl2 and deionized water at iron loading on bentonite showed that more than 90 wt% of the iron is irreversibly sorbed, probably due to the fixation of the iron by isomorphous replacement in the crystal lattice of the sorbent.  相似文献   

11.
Adsorption of reactive black 5 (RB5) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Adsorption data obtained from different batch experiments were modeled using both pseudo first‐ and second‐order kinetic equations. The equilibrium adsorption data were fitted to the Freundlich, Tempkin, and Langmuir isotherms over a dye concentration range of 45–100 µmol/L. The best results were achieved with the pseudo second‐order kinetic and Langmuir isotherm equilibrium models, respectively. The equilibrium adsorption capacity (qe) was increased with increasing the initial dye concentration and solution temperature, and decreasing solution pH. The chitosan flakes for the adsorption of the dye was regenerated efficiently through the alkaline solution and was then reused for dye removal. The activation energy (Ea) of sorption kinetics was estimated to be 13.88 kJ/mol. Thermodynamic parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were evaluated by applying the van't Hoff equation. The thermodynamics of reactive dye adsorption by chitosan indicates its spontaneous and endothermic nature.  相似文献   

12.
Sorption between nanoparticles(NPs)and minerals may critically affect the migration of associated elements as well as the environmental impact of NPs.Since illite is widely present in soil,sediment,and water,we have experimentally investigated the sorption behavior of citrate-coated gold nanoparticles(AuNPs)as model NPs on illite under different pH and mineral mass conditions.We demonstrated that sorption of these negatively charged AuNPs strongly depended on the suspension pH.At pH above 8,which coincided with the apparent point of zero charge(pH 7.9)of our illite sample,only marginal sorption of AuNPs was observed.At pH 3-8,significant sorption of AuNPs on illite was found,with almost complete sorption occurring at more acidic conditions(pH 3-4).TEM observations revealed that sorption took place through the attachment AuNPs on illite edges.At pH 2,AuNPs mostly formed chain-like fused structures and precipitated out of the suspension.Based upon the above pH dependence,residual organic ligand content after sorption,and complementary sorption results with positively charged AuNPs,we conclude that the sorption process is mainly driven by the electrostatic attraction between negatively charged AuNPs and positively charged illite edges,with possible competitive involvement of citrate molecules.We expect that our findings will improve our understanding of NP-mineral interaction and the environmental fate of NPs.  相似文献   

13.
Sorption of Heavy Metals from Acetic Acid Extracts by Ferric Phosphate Colloids A conceivable procedure to remedy heavy metal contaminated soil materials is given with extraction of organic acids, i. e. by the use of a biological degradable extraction agent. The following concentration step of heavy metal extracts should be carried out to a great extent without a change of the low pH values. A conventional precipitation of the heavy metals by rising the pH should be avoided in order to introduce no large amounts of salts into the wastewaters of the process and furthermore, to reduce the amount of sludge to be deposited. The process scheme developed with the objective of heavy metals recycling consists of the following steps: the extraction of the heavy metal contaminated soils with weak organic acids like acetic acid or citric acid, the electrolysis of the extract, and a concentration step in order to treat metal concentrations not fully removed by electrolysis. This third step, e.g. could contain sorption on iron phosphate colloids and precipitation within the acidic environment. It has been examined whether a removal of the heavy metals Pb, Cd, Cu, Sb, Cr, Ni and Zn from acetic aqueous solutions of pH between 2 and 3 can be carried out.  相似文献   

14.
Batch sorption experiments were carried out for the adsorption of the basic dye Rhodamine B from aqueous solution using baryte as the adsorbent. The effect of adsorbent dosage, temperature, initial dye concentration and pH were studied. Adsorption data were modeled using first and second order kinetic equations and the intra particle diffusion model. Kinetic studies showed that the adsorption process followed second order rate kinetics with an average rate constant of 0.05458 g mg–1 min–1. Dye adsorption equilibrium was attained rapidly after 30 min of contact time. The equilibrium data was fitted to the Langmuir, Freundlich and Tempkin isotherms over a dye concentration range of 50–250 mg/L. The adsorption thermodynamic parameters showed that adsorption was an exothermic, spontaneous and less ordered arrangement process. The adsorbent, baryte, was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that baryte has good potential for the removal of Rhodamine B from dilute aqueous solution.  相似文献   

15.
《Marine pollution bulletin》2013,77(1-2):139-145
The sorption of phenanthrene on the Yangtze Estuary sediment was studied under varying conditions of particle size, sediment organic contents, salinity, and dissolved organic matter (DOM) concentrations. Small sediment particles showed higher trapping capacity for phenanthrene due to the higher organic contents associated. The organic carbon-based partition coefficient of phenanthrene to the Yangtze Estuary sediment was obtained as 7120 L/kg, lower than the values for other soils or sediments reported in previous studies. The magnitude and direction of the salt effect were complicated by the specific DOM studied. The sediment sorption capacity was greatly increased in saline water in the absence of DOM but decreased in the presence of DOM. Given the conditions in the Yangtze Estuary, the equilibrium sorption of phenanthrene would be decreased with increasing salinity. Overall, the nature and content of both sediment-bound and dissolved organic matter dominate the sorption of hydrophobic organic contaminants in the estuary.  相似文献   

16.
The biogeochemistry of methane in the sediments of Lake Caviahue was examined by geochemical analysis, microbial activity assays and isotopic analysis. The pH in the water column was 2.6 and increased up to a pH of 6 in the deeper sediment pore waters. The carbon isotope composition of CH4 was between − 65 and − 70‰ which is indicative for the biological origin of the methane. The enrichment factor ε increased from − 46‰ in the upper sediment column to more than − 80 in the deeper sediment section suggesting a transition from acetoclastic methanogenesis to CO2 reduction with depth. In the most acidic surface layer of the sediment (pH < 4) methanogenesis is inhibited as suggested by a linear CH4 concentration profile, activity assays and MPN analysis. The CH4 activity assays and the CH4 profile indicate that methanogenesis in the sediment of Lake Caviahue was active below 40 cm depth. At that depth the pH was above 4 and sulfate reduction was sulfate limited. Methane was diffusing with a flux of 0.9 mmol m− 2 d− 1 to the sediment surface where it was probably oxidized. Methanogenesis contributed little to the sediments carbon budget and had no significant impact on lake water quality. The high biomass content of the sediment, which was probably caused by the last eruption of Copahue Volcano, supported high rates of sulfate reduction which probably raised the pH and created favorable conditions for methanogens in deeper sediment layers.  相似文献   

17.
18.
Field experiments were carried out to evaluate the effect of Granulated Coal Ash (GCA) on remediation of coastal sediments in terms of removing phosphates and hydrogen sulfide. Phosphate concentrations in the sediment were kept below 0.2 mg/l after the application of GCA, whereas those in the control sites increased up to 1.0 mg/l. The concentration of hydrogen sulfide in the sediment was maintained at almost zero in the experimental sites (GCA application sites) for over one year, whereas it ranged 0.1–2.4 mg S L−1 in control sites. Meanwhile, individual number of benthos increased in the experimental sites by several orders of magnitude compared to the control sites. The major process involved in hydrogen sulfide removal by GCA was thought to be the increase in pH, which suppresses hydrogen sulfide formation. From our findings, we concluded that GCA is an effective material for remediating organically enriched coastal sediment.  相似文献   

19.
Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil.  相似文献   

20.
Low temperature in-stream solute acquisition in a glacial environment with very high suspended sediment is critical for downstream evolution of water chemistry. Present work is carried out on 18 km headwater reach from Gomukh (snout of the Gangotri glacier) to Gangotri along River Bhagirathi, India for understanding the hydrological processes controlling the solute acquisition in the glacial environment. This is the first attempt to conduct dissolution experiments with river bed sediments and meltwater considering different operating variables namely; contact time, seasonality, different sediment particle sizes, different sediment dose, effect of pH, wetting and crushing of bed sediments of the glacial stream. The role of sediment in low temperature solute acquisition process is characterized by sudden release of ions from the sediment in initial few seconds. Equilibrium time was observed to be 600 s (10 min). Further progressive increase in EC was observed from Gomukh to Gangotri, suggesting change in sediment surface characteristics/or source. Higher dissolution was observed from the bed sediments collected in June. It is found that the dissolution increases with increase in sediment doses but decreases with an increase in sediment particle size fraction. Higher solute acquisition was observed from crushed sediment because of an abundance of very fine particles having fresh, aggressive/reactive mineral surfaces which are capable of dissolution. The solute released from wetted sediment is significantly lower than the fresh sediment, which may be attributed to the destruction of microparticles adhering to mineral grains, the removal of fresh reactive surface sites, dissolution of rapidly weathered minerals such as calcite and evolution towards to equilibrium of the solution. Further, higher dissolution was observed with decrease in pH, which may be attributed to the availability of more hydrogen ion concentration of the solution, which favours more solute acquisition from sediment into meltwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号