首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solutions of the new standard V‐light curves for the EA type binary UV Leo are obtained using the PHOEBE code (0.31a version). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the absolute magnitude‐color (l.e. MV vs. BV) isochrones diagram, based on which the age of the system is estimated to be >4×109 yr. Also times of minima data (“OC curve”) have been analyzed. Apart from an almost sinusoidal variation with a period of 29.63 yr, which modulates the orbital period, and was attributed to a third body orbiting around the system, other cyclic variation in the orbital period and also brightness, with time scales of 24.25 and 22.77 yr were found, respectively. We associate this with a magnetic activity cycle newly reported here for UV Leo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Photoelectric light curve (LC) solutions of the close binary system TW And were obtained using the PHOEBE program (version 0.31a). Absolute parameters of the stellar components were then determined, enabling us to discuss the structure and evolutionary status of TW And. The configuration of the system based on the LCs solutions indicates that the secondary component is slightly detached from its critical Roche surface. In addition, times of minima data (“OC curve”) were analyzed. Apart from an almost parabolic variation of the general trend of the OC data, indicative of a secular increase in the orbital period with a rate 0.032 s yr–1, which was attributed to a mass transfer with a rate of Δm2 = –1.10 × 10–10 M yr–1. Additionally, a sinusoidal variation with a period of 52.75 ± 1.80 yr, modulating the orbital period, was found, which we attribute to a third body orbiting the system. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
New times of light minimum of the short‐period (P = 0d.26) close binary system, VZ Psc, are presented. A period investigation of the binary star, by combining the three new eclipse times with the others collected from the literatures, shows that the variation of the period might be in an alternate way. Under the hypothesis that the variation of the orbital period is cyclic, a period of 25 years and an amplitude of 0.d0030 for the cyclic change are determined. If this periodic variation is caused by the presence of a third body, the mass of the third body (m3) should be no less than 0.081M. Since both components of VZ Psc are strong chromospherically active and the level of activity of the secondary component is higher than that of the primary one, the period may be more plausibly explained by cyclic magnetic activity of the less massive component. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
New photoelectric UBV observations were obtained for the eclipsing binary TT Her at the Ankara University Observatory (AUO) and three new times of minima were calculated from these observations. The (OC) diagram constructed for all available times of minima of TT Her exhibits a cyclic character superimposed on a quadratic variation. The quadratic character yields an orbital period decrease with a rate of dP /dt = –8.83 × 10–8 day yr–1 which can be attributed to the mass exchange/loss mechanism in the system. By assuming the presence of a gravitationally bound third body in the system, the analysis of the cyclic nature in the (OC) diagram revealed a third body with a mass of 0.21M orbiting around the eclipsing pair. The possibility of magnetic activity cycle effect as a cause for the observed cyclic variation in the (OC) diagram was also discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Orbital period variations of two neglected Algol type binaries, CC Her and XZ Aql, are studied based on all available times of minima. In the case of CC Her, it is found that the OC curve displays a tilted sinusoidal variation with an eccentricity of 0.54 ± 0.03 and a period of 52.4 ± 0.4 yr, which can be explained by the light‐time effect due to the presence of an unseen component. The course of the orbital period change in XZ Aql appears less reliable but its OC curve can be represented by a periodic variation with a period of 36.7 ± 0.6 yr superimposed on an upward parabola. The parabolic variation indicates a secular period increase with a rate of dP /dt = 7.1 s per century. The corresponding conservative mass transfer from less massive component to the more massive one is about 3.26 × 10–7 M yr–1. It is interesting to see that the OC variation of CC Her displays no evidence (as upward parabola) on the mass transfer characteristic for Algols. The periodic change of the orbital period of XZ Aql, like CC Her, may be caused by the presence of the thirdbody. The lower limits of the masses of the hypothetical unseen components for CC Her and XZ Aql are found to be 2.69 M and 0.47 M, respectively. The third body of CC Her should be detectable not only spectroscopically but also photoelectrically, if it exists. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this study we determined precise orbital and physical parameters of the very short‐period low‐mass contact binary system CC Com. The parameters are obtained by analysis of new CCD data combined with archival spectroscopic data. The physical parameters of the cool and hot components are derived as Mc = 0.717(14) M, Mh = 0.378(8) M, Rc = 0.708(12) R, Rh = 0.530(10) R, Lc = 0.138(12) L, and Lh = 0.085(7) L, respectively, and the distance of the system is estimated as 64(4) pc. The times of minima obtained in this study and with those published before enable us to calculate the mass transfer rate between the components which is 1.6 × 10–8 M yr–1. Finally, we discuss the possible evolutionary scenario of CC Com (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present differential Hα and Hβ photometry of the very bright RS CVn‐binary α Aurigae (Capella)obtained with theVienna automatic photoelectric telescope in the years 1996 through 2000. Low‐level photometric variations of up to 0m.04 are detected in Hα. A multifrequency analysis suggests two real periods of 106 ± 3 days and 8.64 ± 0.09 days, that we interpret to be the rotation periods of the cool and the hot component of the Capella binary, respectively. These periods confirm that the hotter component of Capella rotates asynchronously, while the cooler component appears to be synchronized with the binary motion. The combined Hα data possibly contains an additional period of 80.4 days that we, however, believe is either spurious and was introduced due to seasonal amplitude variations or stems from a time‐variable circumbinary mass flow. The rotational periods result in stellar radii of 14.3 ± 4.6 R and 8.5 ± 0.5 R for the cool and hot component, respectively, and are in good agreement with previously published radii based on radiometric and interferometric techniques. The long‐period eclipsing binary Aurigae served as our check star, and we detected complex light variations outside of eclipse of up to 0m.15 in H α and 0m.20 in Hβ. Our frequency analysis suggests the existence of at least three significant periods of 132, 89, and 73 days. One of our comparison stars (HD 33167, F5V) was discovered to be a very‐low amplitude variable with a period of 2.6360 ± 0.0055 days.  相似文献   

10.
We present projected rotational velocity measurements of the red giant in the symbiotic star MWC 560, using the high‐resolution spectroscopic observations with the FEROS spectrograph. We find that the projected rotational velocity of the red giant is v sin i = 8.2 ± 1.5 km s–1, and estimate its rotational period tobe Prot = 144–306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68–0.82. We briefly discuss the connection of our results with the photometric variability of the object (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Photometric BV light curves of BO CVn obtained in 1992 and new times of minima are presented. The primary minimum shows a transit, whereas the secondary minimum, shows an occultation. The system may be classified as an A‐type W UMa system. A complete study of minima allows one to detect a possibly increasing period by about 0.037 s/yr. This indicates that the conservative mass transfer rate from the less massive component to the more massive one is 1.57 10—10M /yr. Because of the variable period, the new ephemeris is determined for future observations. Using the Wilson‐Devinney code a simultaneous solution of the B and V light curves is also performed. The analysis shows that the system is in a contact configuration with q = 0.205 ± 0.001 and fillout factor (f) = 0.18, T1 = 7240 K (fixed), T2 = 7150± 10 K. The high orbital inclination i = 87°.54 ± 0.26 was con firmed by photometric observations of the secondary minimum.  相似文献   

14.
We present an analysis of BV R light curves of an eclipsing binary CK Bootis, a system with a very small mass ratio. The light curves appear to exhibit a typical O'Connell effect. The light curves are analyzed by means of the latest version of the WD program. The asymmetry of the light curves is explained by a cool star spot model. The simultaneous BV R synthetic light curve analysis gives a tiny mass ratio of 0.12, an extremely large fill‐out factor of 0.65, and a very small difference between the component temperatures of 90 K. The absolute parameters of the system were also derived by combining the photometric solutions with the radial velocity data. The mass of the secondary is very low (0.15 M) and it continues losing mass. Thirty seven new times of minimum are reported. It is found that the orbital period of the system has a quasi periodic variation, superimposed on a period increase. The long‐term period increase rate is deduced to be dP/dt = 3.54x10–7 d yr–1, which can be interpreted as being due to mass transfer from the less massive star to the more massive component. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
New standardized V ‐band light curves (LCs) for the eclipsing binary SV Cam have been modeled using the PHOEBE program (v. 0.31a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass‐radius diagram. Analysis of eclipse minima timing data (OC diagrams) indicated two cyclic periods of 48.0 and 23.3 yr. These cyclic variations of the orbital period are interpreted in terms of motion of a third body around the system and magnetic activity cycle modulating the orbital period of SV Cam via the Applegate (1992) mechanism. The use of the Applegate model for SV Cam has been checked by examining the long term brightness variation and calculating some important parameters of this system. The results of these calculations favor the modulation of the orbital period by the Applegate mechanism. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A period study of the young binary AR Aur based on the extensive series of published photoelectric/ccd minima times indicates the cyclic (OC) variation for the system. This continuous oscillatory variation covers almost three cycles, about 6000 orbital periods, by the present observational data. It can be attributed to the light‐time effect due to a third body with a period of 23.68 ± 0.17 years in the system. The analysis yields a light‐time semi‐amplitude of 0.0084 ± 0.0002 day and an orbital eccentricity of 0.20 ± 0.04. Adopting the total mass of AR Aur, the mass of the third body assumed in the co‐planar orbit with the binary is M3 = 0.54 ± 0.03 M and the semimajor axis of its orbit is a3 = 13.0 + 0.2 AU. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson‐Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A‐type contact binary. The period of the system is still increasing, which can be attributed to light‐time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682×10−7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present the analysis of 20 years of time‐series BV photometry of the SB1 RS CVn binary HD 89546. The system's yearly mean V brightness, the BV color index, the photometric period, and the light curve amplitude all show clear cyclic variability with an ≈9‐year time scale. We also find some evidence for brightness variability on a time scale longer than the 20‐year time span of our observations, perhaps indicating a longer cycle analogous to the solar Gleissberg cycle. We estimate the unspotted V magnitude of HD 89546 to be 7.m154, which is ≈0.m2 brighter than the observed maximum brightness. Spot modelling of the system shows that spot temperature variations affect the observed BV color as well as the V brightness. Two active longitudes are observed, centered around 180° and 360° longitude on the G9 III primary, each covering a longitude range of 120°. Furthermore, two inactive longitude zones are seen spanning only 60° between the two active longitudes. The longitudinal distribution of the spots exhibits no strong cyclic variability but does show rapid jumps of 120° that look like the flip‐flop phenomenon. We estimate the differential rotation coefficient of the star as k = 0.086 by considering the range of observed photometric period variations and assumed latitudinal spot variations over 45° (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We have used two robotic telescopes to obtain time‐series high‐resolution optical echelle spectroscopy and VI and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double‐lined systems and for 19 single‐lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 R = 55000 échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα‐core fluxes as a function of time. The photometry is used to infer unspotted brightness, VI and/or by colors, spot‐induced brightness amplitudes and precise rotation periods. An extra 22 radial‐velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation‐temperature‐activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74% of all known rapidly‐rotating active binary stars are synchronized and in circular orbits but 26% (61 systems) are rotating asynchronously of which half have Prot > Porb and e > 0. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin‐down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, Prot α T–7eff, for both single and binaries, main sequence and evolved. For inactive, single giants with Prot > 100 d, the relation is much weaker, Prot α T‐1.12eff. Our data also indicate a period‐activity relation for Hα of the form R α P0.24rot for binaries and R α P‐0.14rot for singles. Its power‐law difference is possibly significant. Lithium abundances in our (field‐star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 1–2 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near Teff ≈ 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) α –0.6 log Prot but again with a dispersion of as large as 3‐4 orders of magnitude (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号