首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The landscape of Galactic X‐ray sources made of accreting binaries, isolated objects and active stellar coronae has been significantly modified by the advent of the Chandra, XMM‐Newton and INTEGRAL satellites. New types of relatively low X‐ray luminosity X‐ray binaries have been unveiled in the Galactic disc, while deep observations of the central regions have revealed large numbers of X‐ray binaries of so far poorly constrained nature. Because of the high spatial resolution needed and faint X‐ray luminosities generally emitted, studying the dependency of the X‐ray source composition with parent stellar population, Galactic disc, bulge, nuclear bulge, etc., is only practicable in our Galaxy. The evolutionary links between low LX X‐ray binaries and classical X‐ray luminous accreting systems are still open in many cases. In addition, the important question of the nature of the compact sources contributing to the Galactic ridge hard X‐ray emission remains unresolved. We review the most important results gathered by XMM‐Newton over the last years in this domain and show how future observations could be instrumental in addressing several of these issues. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this paper, the fourth in a series, we examine again one of the implications of the Lin‐Shu density‐wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line‐of‐sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort‐Lindblad theory of galactic differential rotation are used. The minor effects caused by the two‐dimensional tightly‐wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r < 3 kpc from the Sun and ‐200 < z < 200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high‐velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin–Shu type density waves estimated from two independent line‐of‐sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low‐m trailing density‐wave patterns with different number of spiral arms m (say, m = 1, 2, 3, and 4), pitch angles (about 5°, 8°, 11°, and 14°, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well‐organized (“flocculent”) spiral structure of the system. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We are monitoring a 6° wide stripe along the southern Galactic disk simultaneously in the r and i bands, using a robotic 15‐cm twin telescope of the Universitätsternwarte Bochum near Cerro Armazones in Chile. Utilising the telescope's 2.7° field of view, the survey aims at observing a mosaic of 268 fields once per month and to monitor dedicated fields once per night. The survey reaches a sensitivity from 10m down to 18m (AB system), with a completeness limit of r ∼ 15.5m and i ∼ 14.5m which – due to the instrumental pixel size of 2.″4 – refers to stars separated by >3″. This brightness range is ideally suited to examine the intermediately bright stellar population supposed to be saturated in deep variability surveys with large telescopes. To connect to deep surveys or to explore faint long term variables, coadded images of several nights reach a depth of ∼ 20m. The astrometric accuracy is better than 1″, as determined from the overlap of neighbouring fields. We describe the survey design, the data properties and our procedures to derive the light curves and to extract variable stars. We present a list of ∼2200 variable stars identified in 50 square degrees with 50‐80 observations between May and October 2011. For bright stars the variability amplitude A reaches down to A ∼ 0.05m, while at the faint end variations of A > 1m are detected. About 200 stars were known tobe variable, and their amplitudes and periods – as far as determinable from our six month monitoring – agree with literature values, demonstrating the performance of the Bochum Galactic Disk Survey (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present a first overview of variable stars in the Bochum Galactic Disk Survey (GDS) with emphasis on eclipsing binaries (EBs). This ongoing survey is performed by a robotic twin refractor at the Universitätssternwarte Bochum located near Cerro Armazones in Chile. It comprises a mosaic of 268 fields in a stripe of Δb = ±3° along the Galactic plane observed once per month simultaneously in the Sloan r and i filters with a detection limit of rs ∼ 16 mag and is ∼ 15 mag. The data from the first three years until the end of February 2014 yields a total of 41718 variable stars with variability amplitudes between 0.1–6 mag. A cross‐match with SIMBAD identified 11 465 of these variables unambiguously, while 2184 had multiple matches; most of the remaining stars could be matched with 2MASS objects. Among the SIMBAD‐listed objects with single matches, only 1982 turned out as known variables while a further 256 are suspected of variability. That leaves a total of 39480 potentially new variables. The group of known variables comprises 419 stars (21 %) that are classified as EBs while 443 (22%) are of other types; for the remaining 1120 catalogued variables (57 %) the type is unknown. Investigating variability as a function of spectral type, we find that SIMBAD provides spectral types for 2811 (25 %) of the identified stars. Spectral classes B (26 %), A (20 %), and M (25%) contain the most numerous variables, while all other classes contribute less than 10% each. More than half of the B (55 %) and A (56%) stars are designated as EBs, suggesting that hundreds of new B‐ and A‐type EBs may be contained in the GDS archive. In contrast, among the numerous M stars no EBs are known. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present a brief account of the theory on which the novel method of ‘Fourier‐resolved spectroscopy’ is based. We summarize the results from the past application of this method to the study of Galactic Black Hole candidate sources and MCG‐6‐30‐15, and we present new results from the Fourier‐resolved spectroscopy of archival XMM‐Newton data of five AGN, namely, Mrk 766, NGC 3516, NGC 3783, NGC 4051 and Ark 564. When we combine all the past and present results from Galactic sources and AGN, we find that the slope of the Fourier‐resolved spectra in accreting black hole systems decreases with increasing frequency as ∝ f –0.25, irrespective of whether the system is in its High or Low state. We find significant evidence that the iron line in Mrk 766, NGC 3783 and NGC 4051 is variable on time scales ∼1 day – 1 hour. There is an indication that, just like in Galactic sources, the equivalent width of the line in the Fourier‐resolved spectra of AGN decreases with increasing frequency. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The Two Micron Galactic Survey (TMGS) is the most sensitive large scale point source near infrared survey of the Galactic Plane yet attempted. The Galactic plane has been drift-scanned in several regions over the areas -5° <l < 30°, |b | 15° and 30° <l < 180°, |b | 5°. The survey is complete in the areas covered to magnitudem k = +9.8. So far, a total area of 255 square degrees has been mapped and 500000 objects have been detected, the majority of these in the Galactic plane and with no visible counterparts. In this contribution we use data from the TMGS to probe the star distribution within the Galactic disk.  相似文献   

7.
Polarized intensity and polarization angles are calculated from Stokes parameters Q and U in a nonlinear way. The statistical properties of polarized emission hold information about the structure of magnetic fields in a large range of scales, but the contributions of different stages of data processing to the statistical properties should first be understood. We use 1.4 GHz polarization data from the Effelsberg 100‐m telescope of emission in the Galactic plane, near the plane and far out of the plane. We analyze the probability distribution function and the wavelet spectrum of the original maps in Stokes parameters Q, U and corresponding PI. Then we apply absolute calibration (i.e. adding the large‐scale emission to the maps in Q and U), subtraction of polarized sources and subtraction of the positive bias in PI due to noise (“denoising”). We show how each procedure affects the statistical properties of the data. We find a complex behavior of the statistical properties for the different regions analyzed which depends largely on the intensity level of polarized emission. Absolute calibration changes the morphology of the polarized structures. The statistical properties change in a complex way: Compact sources in the field flatten the wavelet spectrum over a substantial range. Adding large‐scale emission does not change the spectral slopes in Q and U at small scales, but changes the PI spectrum in a complex way. “Denoising” significantly changes the p.d.f. of PI and raises the entire spectrum. The final spectra are flat in the Galactic plane due to magnetic structures in the ISM, but steeper at high Galactic latitude and in the anticenter. For a reliable study of the statistical properties of magnetic fields and turbulence in the ISM based on radio polarization observations, absolute calibration and source subtraction are required. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
One of the main obstacles for extracting the Cosmic Microwave Background (CMB) from mm/submm observations is the pollution from the main Galactic components: synchrotron, free‐free and thermal dust emission. The feasibility of using simple neural networks to extract CMB has been demonstrated on both temperature and polarization data obtained by the WMAP satellite. The main goal of this paper is to demonstrate the feasibility of neural networks for extracting the CMB signal from the Planck polarization data with high precision. Both auto‐correlation and cross‐correlation power spectra within a mask covering about 63 % of the sky have been used together with a “high pass filter” in order to minimize the influence of the remaining systematic errors in the Planck Q and U maps. Using the Planck 2015 released polarization maps, a BB power spectrum have been extracted by Multilayer Perceptron neural networks. This spectrum contains a bright feature with signal to noise ratios 4.5 within 200 ≪ l ≪ 250. The spectrum is significantly brighter than the BICEP2 2015 spectrum, with a spectral behaviour quite different from the “canonical” models (weak lensing plus B‐modes spectra with different tensor to scalar ratios). The feasibility of the neural network to remove the residual systematics from the available Planck polarization data to a high level has been demonstrated. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
First studies of the X‐ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM‐Newton observations led to a better knowledge of the X‐ray source population. An XMM‐Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2–4.5 keV luminosity of 1035 erg s–1. EPIC hardness ratios as well as informations from earlier X‐ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X‐ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as “hard”. These sources may either be XRBs or Crab‐like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X‐ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM‐Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X‐ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Very high energy (VHE) γ‐ray observations have proven to be very successful in localizing Galactic acceleration sites of VHE particles. Observations of shell‐type supernova remnants have confirmed that particles are accelerated to VHE energies in supernova blast waves; the interpretation of the γ‐ray data in terms of hadronic or leptonic particle components in these objects relies nevertheless strongly on input from X‐ray observations. The largest identified Galactic VHE source class consists of pulsar wind nebulae, as detected in X‐rays. Many of the remaining VHE sources remain however unidentified until now. With X‐ray observations of these enigmatic “dark” objects one hopes to solve the following questions: What is the astrophysical nature of these sources? Are they predominantly electron or hadron accelerators? And what is their contribution to the overall cosmic ray energy budget? The paper aims to provide an overview over the identification status of the Galactic VHE source population. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The ROSAT All-Sky Survey revealed soft X-ray emission on kiloparsec scales towards the Galactic center. Separately, it has also been observed that the cosmic ray intensity (measured via γ-ray emission) rises only very slowly towards the center of the Galaxy, counter to expectations based on the greater number of cosmic ray sources there. A thermal and cosmic-ray driven wind could potentially explain both of these observations. We find that a cosmic-ray and thermally driven wind fits the X-ray observations well; in fact, a wind fits significantly better than an earlier-proposed static-polytrope gas model.  相似文献   

12.
We report the discovery of a bright blue quasar: SDSS J022218.03–062511.1. This object was discovered spectroscopically while searching for hot white dwarfs that may be used as calibration sources for large sky surveys such as the Dark Energy Survey or the Large Synoptic Survey Telescope project. We present the calibrated spectrum, spectral line shifts and report a redshift of z = 0.521±0.0015 and a rest‐frame g‐band luminosity of 8.71×1011 L. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We collect the data of twin kilohertz quasi‐periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low‐mass X‐ray binary (LMXB) sources, then we analyze the centroid frequency (ν) distribution of twin kHz QPOs (lower frequency ν1 and upper frequency ν2) both for Atoll and Z sources. For the data without shift‐and‐add, we find that Atoll and Z sources show different distributions of ν1, ν2 and ν2/ν1, but the same distribution of Δν (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Δν is quite different from a constant value, so is ν 2/ν1 from a constant ratio. The weighted mean values and maxima of ν1 and ν2 in Atoll sources are slightly higher than those in Z sources. We also find that shift‐and‐add technique can reconstruct the distributions of ν1 and Δν. The K‐S test results of ν1 and Δν between Atoll and Z sources from data with shift‐and‐add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root‐meansquared (rms) amplitude of 4U 0614+09 with data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency (νs) distribution of 28 NS‐LMXBs show a bigger mean value (∼408 Hz) than that (∼281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency νs, we find the approximate correlations of the mean values of Δν with NS spin and its half, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
ROTSE‐III is a homogeneous worldwide array of 4 robotic telescopes. They were designed to provide optical observations of γ ‐ray burst (GRB) afterglows as close as possible to the start of γ ‐ray emission. ROTSE‐III is fulfilling its potential for GRB science, and provides optical observations for a variety of astrophysical sources in the interim between GRB events. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Use is made of 93,106 parallaxes from the Hipparcos catalog, with a mixture of spectrum-luminosity classes, to derive the position of the Galactic plane. The reduction technique, mixed total least squares-least squares, takes into account the errors in the parallaxes, and the condition that the direction cosines of the Galactic pole have unit Euclidean norm is rigorously enforced. To obtain an acceptable solution it is necessary to eliminate the stars of classes O and B that belong to the Gould belt. The Sun is found to lie 34.56±0.56 pc above the plane. The coordinates of the Galactic pole, l g , b g, are found to be: l g =0.°004±0.°039; b g =89.°427±0.°035.This agrees well with what radio observations find and demonstrates that the IAU's recommendation in 1960 to use only radio observations to determine the Galactic pole, although correct at the time because of the paucity of optical observations, can no longer be justified given the plethora of observations contained in the Hipparcos catalog and an adequate reduction technique, unavailable in 1960. The reduction technique is also demonstrably superior to others because it involves fewer assumptions and calculates smaller mean errors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We describe the procedure we used to compile a catalog of the proper motions of 23 633 stars in the sky area covering about 700 square degrees at the north Galactic pole. The compiled catalog combines the data from the UCAC2, Tycho-2, and FONAC catalogs for stars down to V ~ 14 m in this sky area. In addition to proper motions, the catalog also contains the near-infrared magnitudes J, H, and K s in the 2MASS system. The mean accuracy is 2.5 mas/yr for proper motions and 0.03 m for magnitudes.  相似文献   

18.
This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length,h R , is rather short (2.7 ± 0.1 kpc).  相似文献   

19.
In the last couple of decades hundreds of studies have explored the nature of star‐forming galaxies at different redshifts. This contribution focuses on X‐shooter observations of star‐burst galaxies at 0 < z < 6 from commissioning runs, science verification, and regular observations, and demonstrates the capability of the new instrument in this competitive field. Observations of gravitationally lensed galaxies show that X‐shooter has no limitation in the redshift desert (1.4 < z < 2) where the strong optical emission lines are shifted to the near‐IR region. Physical properties of galaxies, such as masses, metallicities, abundance ratios, and star formation rates can be derived from observations with relatively short integration times for faint galaxies. The simultaneous UV to near‐IR spectral coverage makes derivation of physical quantities more reliable because there are no differential slit losses as may occur when observations from different optical and near‐IR instruments are used. Over the entire redshift range, spectra of faint galaxies will allow us to better measure stellar ages and dominating ionisation sources compared to broad band spectral energy distribution measurements (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s–1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246±7 km s–1, for Solar motions of V = 12.23 and 5.25 km s–1, respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) survey (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号