首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This work reports on a study of the spatially coarse‐grained velocity dispersion in cosmological N‐body simulations (OCDM and ΛCDM models) as a function of time (redshifts z = 0–4) and of the coarsening length (0.6–20 h−1 Mpc). The main result is the discovery of a polytropic relationship ℐ1ϱ2–η between the velocity‐dispersion kinetic energy density of the coarsening cells, ℐ1, and their mass density, ϱ. The exponent η, dependent on time and coarsening scale, is a compact measure of the deviations from the naive virial prediction ηvirial = 0. This relationship supports the “polytropic assumption” which has been employed in theoretical models for the growth of cosmological structure by gravitational instability. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper we have presented a very general class of solutions for rotating fluid disks around massive objects (neglecting the self gravitation of the disk) with density as a function of the radial coordinate only and pressure being nonzero. Having considered a number of cases with different density and velocity distributions, we have analysed the stability of such disks under both radial and axisymmetric perturbations. For a perfect gas disk with γ= 5/3 the disk is stable with frequency (MG/r3)1/2 for purely radial pulsation with expanding and contracting boundary. In the case of axisymmetric perturbation the critical γc for neutral stability is found to be much less than 4/3 indicating that such disks are mostly stable under such perturbations. On leave of absence from Government College, Jagdalpur 494005.  相似文献   

4.
This work derives the linearized equations of motion, the Lagrangian density, the Hamiltonian density, and the canonical angular momentum density for general perturbations [∝ exp (imφ) with m = 0, ± 1, ...] of a geometrically thin self-gravitating, homentropic fluid disk including the pressure. The theory is applied to “eccentric,” m = ± 1 perturbations of a geometrically thin Keplerian disk. We find m = 1 modes at low frequencies relative to the Keplerian frequency. Further, it is shown that these modes can have negative energy and negative angular momentum. The radial propagation of these low-frequency m = 1 modes can transport angular momentum away from the inner region of a disk and thus increase the rate of mass accretion. Depending on the radial boundary conditions there can be discrete low-frequency, negative-energy, m = 1 modes.  相似文献   

5.
Cool weakly ionized gaseous rotating disk form the basis for many models in astrophysics objects. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Traditionally, axisymmetric magnetohydrodynamic (MHD) and recently Hall‐MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against axisymmetric perturbations in incompressible rotating fluid in external poloidal and toroidal magnetic field is considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The dynamics of small global perturbations in the form of a linear combination of a finite number of non‐axisymmetric eigenmodes is studied in the two‐dimensional approximation. The background flow is assumed to be an axisymmetric perfect fluid with adiabatic index γ = 5/3 rotating with a power law angular velocity distribution Γ ∝ rq , 1.5 < q < 2.0, confined by free boundaries in the radial direction. The substantial transient growth of acoustic energy of optimized perturbations is discovered. An optimal energy growth G is calculated numerically for a variety of parameters. Its value depends essentially on the perturbation azimuthal wavenumber m and increases for higher values of m. The closer the rotation profile to the Keplerian law, the larger growth factors can be obtained but over a longer time. The highest acoustic energy increase found numerically is of order ∼102 over ∼6 typical Keplerian periods. Slow neutral eigenmodes with corotation radius beyond the outer boundary mostly contribute to the transient growth. The revealed linear temporal behaviour of perturbations may play an important role in angular momentum transfer in toroidal flows near compact relativistic objects (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We calculate the amount of angular momentum that thermal photons carry out of a viscous black hole accretion disk, due to the strong Doppler shift imparted to them by the high orbital velocity of the radiating disk material. While thermal emission can not drive accretion on its own, we show that along with disk heating it does nonetheless result in a loss of specific angular momentum, thereby contributing to an otherwise viscosity‐driven accretion flow. In particular, we show that the fraction of the angular momentum that is lost to thermal emission at a radius r in a standard, multi‐color disk is ∼0.4rs/r, where rs is the Schwarzschild radius of the black hole. We briefly highlight the key similarties between this effect and the closely related Poynting‐Robertson effect (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper we consider the equilibrium of a magnetofluid disc in Schwarzschild background with an external magnetic field, having the azimuthal and the radial components of the flow velocity nonzero. The electrical conductivityσ of the fluid is taken to be finite and thus the solution for the electromagnetic field is required to satisfy the Ohm’s law too with the four-current having onlyJ ϕ andJ t nonzero. The various physical parameters that have to correlate for possible equilibrium configurations are identified and their respective magnitudes estimated. It is found that for a given angular momentum distribution the inner edge of the disc can reach well within the usual6m limit only when the surface magnetic field of the central object is not too high when the matter density at the outer edge of the disc and the accretion rate are taken with reasonable limits  相似文献   

9.
Stability of thin hot Keplerian discs is investigated asymptotically in small disc's aspect ratio, ε. The study is carried out in the local approximation for short vertical waves in the disc‐thickness scale. Besides the radial rotation shear and the vertical magnetic field, the background configuration is characterized by a vertically near‐constant temperature profile with a small vertical gradient. The temperature‐gradient term in Ohm's law, which characterizes the thermomagnetic transport is found to be of the order of ε. The effect of the thermomagnetic transport slightly modifies the conventional magnetorotational instability (MRI), while a new thermomagnetic instability (TMI) emerges in regions of the wavenumber space where MRI is absent. Explicit solutions are obtained for a wide range of values of plasma beta, β, and thermomagnetic transport coefficient, λ. In particular, it is shown for λ ≪ 1 that the MRI dominates in weak magnetic fields, β ≫ 1, while the TMI is exhibited in strong magnetic fields, β ∼ 1, also with the growth rate of the order of inverse rotation period (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The stability of a self‐gravitating infinitesimally thin gaseous disk rotating around a central mass is studied. Our global linear analysis concerns marginal stability, i.e. it yields the critical temperature for the onset of instability for any given ratio of the disk mass to the central mass. Both axisymmetric and low‐m nonaxisymmetric excitations are analysed. When the fractional disk mass increases, the symmetry character of the instability changes from rings (m = 0) to one‐armed trailing spirals (m = 1). The distribution of the surface density along the spiral arms is not uniform, but describes a sequence of maxima that might be identified with forming planets. The number of the mass concentrations decreases with increasing fractional disk mass. We also obtain solutions in the form of global nonaxisymmetric vortices, which are, however, never excited.  相似文献   

11.
We have identified three possible ways in which future XMM‐Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X‐ray transient Cen X‐4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X‐ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X‐ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in NH. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM‐Newton observations of radius expansion type I Xray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM‐Newton observations of eclipsing quiescent low‐mass X‐ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X‐ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi‐amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The velocity fluctuations in a spherical shell arising from sinusoidal perturbations of a Keplerian shear flow with a free amplitude parameter ε are studied numerically by means of fully 3D nonlinear simulations. The investigations are performed at high Reynolds numbers, i.e. 3000 < Re < 5000. We find Taylor‐Proudman columns of large eddies parallel to the rotation axis for sufficiently strong perturbations. An instability sets in at critical amplitudes with εcrit ∝ Re—1. The whole flow turns out to be almost axisymmetric and nonturbulent exhibiting, however, a very rich radial and latitudinal structure. The Reynolds stress 〈uruϕ〉 is positive in the entire computational domain, from its Gaussian radial profile a positive viscosity‐alpha of about 10—4 is derived. The kinetic energy of the turbulent state is dominated by the azimuthal component 〈u′2ϕ whereas the other components are smaller by two orders of magnitude. Our simulations reveal, however, that these structures disappear as soon as the perturbations are switched off. We did not find an “effective” perturbation whose amplitude is such that the disturbance is sustained for large times (cf. Dauchot & Daviaud 1995) which is due to the effective violation of the Rayleigh stability criterion. The fluctuations rapidly smooth the original profile towards to pure Kepler flow which, therefore, proves to be stable in that sense.  相似文献   

13.
We collect the data of twin kilohertz quasi‐periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low‐mass X‐ray binary (LMXB) sources, then we analyze the centroid frequency (ν) distribution of twin kHz QPOs (lower frequency ν1 and upper frequency ν2) both for Atoll and Z sources. For the data without shift‐and‐add, we find that Atoll and Z sources show different distributions of ν1, ν2 and ν2/ν1, but the same distribution of Δν (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Δν is quite different from a constant value, so is ν 2/ν1 from a constant ratio. The weighted mean values and maxima of ν1 and ν2 in Atoll sources are slightly higher than those in Z sources. We also find that shift‐and‐add technique can reconstruct the distributions of ν1 and Δν. The K‐S test results of ν1 and Δν between Atoll and Z sources from data with shift‐and‐add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root‐meansquared (rms) amplitude of 4U 0614+09 with data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency (νs) distribution of 28 NS‐LMXBs show a bigger mean value (∼408 Hz) than that (∼281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency νs, we find the approximate correlations of the mean values of Δν with NS spin and its half, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this short paper we show that making turbulence two‐rather than three‐dimensional may increase the effective turbulent viscosity by about 40 %. Dimensionless hydrodynamical viscosity parameters up to αmax = 0.25 Mt2 may be obtained in this approach, which are in better agreement with the observational data on non‐stationary accretion than the values obtained in numerical simulations. However, the α ‐parameter values known from observations are still several times higher (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present new radial velocities of the high‐mass X‐ray binary star 4U 2206+54 based on optical spectra obtained with the Coudé spectrograph at the 2 m RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria in the period November 2011–July 2013. The radial velocity curve of the He I δ6678 Å line is modeled with an orbital period Porb = 9.568 d and an eccentricity of e = 0.3. These new measurements of the radial velocity resolve the disagreements of the orbital period discussions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Variability on all time scales between seconds and decades is typical for cataclysmic variables (CVs). One of the brightest and best studied CVs is TT Ari, a nova‐like variable which belongs to the VY Scl subclass, characterized by occasional low states in their light curves. It is also known as a permanent superhumper at high state, revealing “positive” (PS > P0) as well as “negative” (PS < P0) superhumps, where PS is the period of the superhump and P0 the orbital period. TT Ari was observed by the Canadian space telescope MOST for about 230 hours nearly continuously in 2007, with a time resolution of 48 seconds. Here we analyze these data, obtaining a dominant “negative” superhump signal with a period PS = 0.1331 days and a mean amplitude of 0.09 mag. Strong flickering with amplitudes up to 0.2 mag and peak‐to‐peak time scales of 15–20 minutes is superimposed on the periodic variations. We found no indications for significant quasi‐periodic oscillations with periods around 15 minutes, reported by other authors. We discuss the known superhump behaviour of TTAri during the last five decades and conclude that our period value is at the upper limit of all hitherto determined “negative” superhump periods of TTAri, before and after the MOST run. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We consider the contribution of microlensing to the AGN Fe Kα line and X‐ray continuum amplification and variation. To investigate the variability of the line and X‐ray continuum, we studied the effects of microlensing on quasar X‐ray spectra produced by crossing of a microlensing pattern across a standard relativistic accretion disk. To describe the disk emission we used a ray tracing method considering both metrics, Schwarzschild and Kerr. We found that the Fe Kα and continuum may experience significant amplification by a microlensing event (even for microlenses of very small mass). Also, we investigate a contribution of microlensing to the X‐ray variability of high‐redshifted QSOs, finding that cosmologically distributed deflector may contribute significantly to the X‐ray variability of high‐redshifted QSOs (z > 2). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present the result of a study on the expansion properties and internal kinematics of round/elliptical planetary nebulae of the Milky Way disk, the halo, and of the globular cluster M 15. The purpose of this study is to considerably enlarge the small sample of nebulae with precisely determined expansion properties (Schönberner et al. 2005b). To this aim, we selected a representative sample of objects with different evolutionary stages and metallicities and conducted highresolution ´echelle spectroscopy. In most cases we succeeded in detecting the weak signals from the outer nebular shell which are attached to the main line emission from the bright nebular rim. Next to the measurement of the motion of the rim gas by decomposition of the main line components into Gaussians, we were able to measure separately, for most objects for the first time, the gas velocity immediately behind the leading shock of the shell, i.e. the post‐shock velocity. We more than doubled the number of objects for which the velocities of both rim and shell are known and confirm that the overall expansion of planetary nebulae is accelerating with time. There are, however, differences between the expansion behaviour of the shell and the rim: The post‐shock velocity is starting at values as low as around 20 km s–1 for the youngest nebulae, just above the AGB wind velocity of ∼ 10–15 km s–1, and is reaching values of about 40 km s–1 for the nebulae around hotter central stars. Contrarily, the rim matter is at first decelerated below the typical AGB‐wind velocity and remains at about 5–10 km s–1 for a while until finally a typical flow velocity of up to 30 km s–1 is reached. This observed distinct velocity evolution of both rim and shell is explained by radiation‐hydrodynamics simulations, at least qualitatively: It is due to the ever changing stellar radiation field and wind‐wind interaction together with the varying density profile ahead of the leading shock during the progress of evolution. The wind‐wind interaction works on the rim dynamics while the radiation field and upstream density gradient is responsible for the shell dynamics. Because of these time‐dependent boundary conditions, a planetary nebula will never evolve into a simple self‐similar expansion. Also the metal‐poor objects behave as theory predicts: The post‐shock velocities are higher and the rim flow velocities are equal or even lower compared to disk objects at similar evolutionary stage. The old nebula around low‐luminosity central stars contained in our sample expand still fast and are dominated by reionisation. We detected, for the first time, in some objects an asymmetric expansion behaviour: The relative expansions between rim and shell appear to be different for the receding and approaching parts of the nebular envelope. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We show that aperiodic and quasiperiodic variability of bright LMXBs – atoll and Z‐sources – on ∼ sec‐msec time scales is caused primarily by variations of the luminosity of the boundary layer. The emission of the accretion disk is less variable on these time scales and its power density spectrum follows P disk(f ) ∝ f –1 law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies, i.e. independent of the nature of the “clock”, the actual luminosity modulation takes place on the neutron star surface. The boundary layer spectrum remains nearly constant in the course of the luminosity variations and is represented to certain accuracy by the Fourier frequency resolved spectrum. In the investigated range of ∼ (0.1 – 1) Edd it depends weakly on the global mass accretion rate and in the limit ∼ Edd is close toWien spectrum with kT ∼ 2.4 keV. Its independence on the global value of lends support to the theoretical suggestion by Inogamov & Sunyaev (1999) that the boundary layer is radiation pressure supported. Based on the knowledge of the boundary layer spectrum we attempt to relate the motion along the Z‐track to changes of physically meaningful parameters. Our results suggest that the contribution of the boundary layer to the observed emission decreases along the Z‐track from conventional ∼50% on the horizontal branch to a rather small number on the normal branch. This decrease can be caused, for example, by obscuration of the boundary layer by the geometrically thickened accretion disk at ∼ Edd. Alternatively, this can indicate significant change of the structure of the accretion flow at ∼ Edd and disappearance of the boundary layer as a distinct region of the significant energy release associated with the neutron star surface. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号