首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is emphasized to explore the validity of generalized second law of thermodynamics in the context of non-linear electrodynamics (magnetic effects only) with Brans-Dicke chameleon scalar field as dark energy candidate. For this purpose, we consider FRW universe model with perfect fluid matter contents. We evaluate matter energy density and magnetic field by taking interacting and non-interacting cases of magnetic field and matter as well as the power law ansatz for scalar field. The validity of this law is discussed by using the first law of thermodynamics for four different horizons: Hubble, apparent, particle and event horizons. We conclude that this law may hold for all four horizons with small positive red-shift when chameleon mechanism is taken into account in Brans-Dicke gravity. Finally, we investigate the statefinders in order to check the viability of the model.  相似文献   

2.
We study some holographic dark energy models in chameleonic Brans-Dicke field gravity by taking interaction between the dark energy components in FRW universe. Firstly, we take the holographic dark energy model with Granda-Oliveros cut-off and discuss interacting as well as non-interacting cases. Secondly, we consider the holographic dark energy with both power-law as well as logarithmic corrections using Hubble scale as infrared cut-off in interacting case only. We describe the evolution of some cosmological parameters for these holographic dark energy models. It is concluded that the phantom crossing can be achieved more easily in the presence of chameleonic Brans-Dicke field as compared to simple Brans-Dicke as well as Einstein’s gravity. Also, the deceleration parameter strongly confirms the accelerated expanding behavior of the universe.  相似文献   

3.
4.
We consider Brans-Dicke theory with a self-interacting potential in Einstein conformal frame. We introduce a class of solutions in which an accelerating expansion is possible in a spatially flat universe for positive and large values of the Brans-Dicke parameter consistent with local gravity experiments. In this Einstein frame formulation, the theory appears as an interacting quintessence model in which the interaction term is given by the conformal transformation. In such an interacting model, we shall show that the solutions lead simultaneously to a constant ratio of energy densities of matter and the scalar field.  相似文献   

5.
We study the holographic dark energy (HDE) model in generalized Brans-Dicke scenario with a non-minimal coupling between the scalar field and matter Lagrangian namely Chameleon Brans Dicke (CBD) mechanism. In this study we consider the interacting and non-interacting cases for two different cutoffs. The physical quantities of the model such as, equation of state (EoS) parameter, deceleration parameter and the evolution equation of dimensionless parameter of dark energy are obtained. We shall show that this model can describe the dynamical evolution of fraction parameter of dark energy in all epochs. Also we find the EoS parameter can cross the phantom divide line by suitable choices of parameters without any mines kinetic energy term.  相似文献   

6.
In this paper we study the interacting dark energy model in the framework of Hořava-Lifshitz cosmology. Using an additional canonical scalar field, we formulate Hořava-Lifshitz cosmology with an effective interacting dark energy sector. We show that the interacting dark energy model in the framework of Hořava gravity exhibiting phantom behavior.  相似文献   

7.
The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<−1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of Li et al. (Adv. High Energy Phys. 2009: 905705, 2009), which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.  相似文献   

8.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

9.
We aim in this paper to study Brans-Dicke cosmology in the presence of varying mass fermions and a self-interaction potential. Furthermore, we also probe the entropy corrected holographic dark energy (ECHDE) in the model in two non-interacting and interacting scenarios. The model parameters are constrained by using the recent SNe Ia observational data and tested against observational data of Hubble parameter. For a comparison, we also constrained and tested the cosmological parameters in ΛCDM model with the same observational data. We show that in non of the scenarios the model prediction is better than ΛCDM model.  相似文献   

10.
We study stability formulation of holographic dark energy in Brans-Dicke theory. The model is constrained with observations. The results verifies the cosmic acceleration in near past. With the stability analysis we find that the universe transits from quintessence to phantom state in near future while approaching a stable state.  相似文献   

11.
By solving a Wheeler-De Witt ‘extended’ equation in the Brans-Dicke theory, we have found that the probability distribution predicts: i) An initial value for the Brans-Dicke scalar field φ ∼ ρ1/2_VAC in the beginning of the inflation, where ρVAC is the vacuum density energy (this gives a planck mass ∼ ρ1/4_VAC) ii) Large values for the Brans-Dicke parameter w. On the other hand it is shown that by taking into account the dynamical behaviour of φ and the matter scalar field σ we can formulate a ‘creation boundary condition’ where in the ‘beginning’ of the Universe (R =0, ‘nothing’ for some authors) we have a dynamical σ already ‘created’. This could be the energetic mechanism which makes Universe tunnels the potential barrier to evolve classically after. Besides we have found the possibility of a cosmological uncertainty principle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In Brans-Dicke theory of gravity, from the nature of the scalar field-potential considered, the dark energy, dark matter, radiation densities predicted by different observations and the closedness of the universe considered, we can fix our ω BD , the Brans-Dicke parameter, keeping only the thing in mind that from different solar system constrains it must be greater than 5×105. Once we have a value, satisfying the required lower boundary, in our hand we proceed for setting unknown parameters of the different dark energy models’ EoS parameter. In this paper we work with three well known red shift parametrizations of dark energy EoS. To constrain their free parameters for Brans Dicke theory of gravity we take twelve point red shift vs Hubble’s parameter data and perform χ 2 test. We present the observational data analysis mechanism for Stern, Stern+BAO and Stern+BAO+CMB observations. Minimising χ 2, we obtain the best fit values and draw different confidence contours. We analyze the contours physically. Also we examine the best fit of distance modulus for our theoretical models and the Supernovae Type Ia Union2 sample. For Brans Dicke theory of gravity the difference from the mainstream confidence contouring method of data analysis id that the confidence contours evolved are not at all closed contours like a circle or a ellipse. Rather they are found to be open contours allowing the free parameters to float inside a infinite region of parameter space. However, negative EoSs are likely to evolve from the best fit values.  相似文献   

13.
Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of the universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.  相似文献   

14.
We have found that for the Bianchi types I–II–III–V in the Brans-Dicke theory, the scalar field of the theory φ has the same form in the isotropic case. It is shown that the isotropization of the Universe occurs in a very short time when the Universe is dominated by vacuum energy, proving that an isotropic Robertson-Walker model is a good approximation to use in the extended inflation scenario. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.  相似文献   

16.
The historical motivation for the Brans-Dicke theory and its connection with Mach’s principle has been discussed. Some examples of actions which can be reduced to the Brans-Dicke type have been given. Further, the recent developments in the theory in the context of inflationary cosmology have been briefly pointed out.  相似文献   

17.
We investigate the validity of the generalized second law of gravitational thermodynamics in a non-flat FRW universe containing the interacting generalized Chaplygin gas with the baryonic matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the interacting generalized Chaplygin gas as a unified candidate for dark matter and dark energy, the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the equation of state of the interacting generalized Chaplygin gas model.  相似文献   

18.
Here we consider our universe as homogeneous spherically symmetric FRW model and analyze the thermodynamics of this model of the universe in scalar-tensor theory. Assuming the first law of thermodynamics validity of the generalized second law of thermodynamics (GSLT) at the event horizon is examined in both the cases when the universe is filled with perfect fluid and the holographic dark energy.  相似文献   

19.
The Bianchi type-V cosmological model with viscous fluid and creation particle in Brans-Dicke theory has been considered. The present paper deals with Bianchi type-V cosmological model with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We have discussed two types of solutions of the average scale factor for a Bianchi type-V model by using a variation law of Hubble’s parameter, which yields a constant value of the deceleration parameter. The exact solutions to the corresponding field equations are obtained in quadrature form. The solutions to the Einstein field equations are obtained for power law and exponential form. The cosmological parameters have been discussed in detail.  相似文献   

20.
A new model of dark energy namely “ghost dark energy model” has recently been suggested to interpret the positive acceleration of cosmic expansion. The energy density of ghost dark energy is proportional to the hubble parameter. In this paper we perform the statefinder diagnostic tool for this model both in flat and non-flat universe. We discuss the dependency of the evolutionary trajectories in sr and qr planes on the interaction parameter between dark matter and dark energy as well as the spatial curvature parameter of the universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we plot the evolutionary trajectories in sr and qr planes for the best fit values of the cosmological parameters and compare the interacting ghost model with other dynamical dark energy models. We show that the evolutionary trajectory of ghost dark energy in statefinder diagram is similar to holographic dark energy model. Finally, it has been shown that from the viewpoint of statefinder analysis, the ghost dark energy model has a better agreement with observations compare with holographic and new holographic dark energy models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号