首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we improve the previous work on the MHD Alfvén wave oscillation model for the neutron star (NS) kHz quasi‐periodic oscillations (QPOs), and compare the model with the updated twin kHz QPO data. For the 17 NS X‐ray sources with the simultaneously detected twin kHz QPO frequencies, the stellar mass M and radius R constraints are given by means of the derived parameter A in the model, which is associated with the averaged mass density of the star as 〈ρ 〉 = 3M /(4πR3) ≃ 2.4 × 1014 (A /0.7)2 g/cm3, and we also compare the MR constraints with the stellar equations of state. Moreover, we also discuss the theoretical maximum kHz QPO frequency and maximum twin peak separation, and some expectations on SAX J1808.4–3658 are mentioned, such as its highest kHz QPO frequency ∼ 870 Hz, which is about 1.4–1.5 times less than those of the other known kHz QPO sources. The estimated magnetic fields for both Z sources (about Eddington accretion rate ) and Atoll sources (∼ 1% ) are approximately ∼109 G and ∼108 G, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Double peak kHz QPO frequencies in neutron star sources varies in time by a factor of hundreds Hz while in microquasar sources the frequencies are fixed and located at the line ν 2 = 1.5ν 1 in the frequency‐frequency plot. The crucial question in the theory of twin HFQPOs is whether or not those observed in neutron‐star systems are essentially different from those observed in black holes. In black hole systems the twin HFQPOs are known to be in a 3:2 ratio for each source. At first sight, this seems not to be the case for neutron stars. For each individual neutron star, the upper and lower kHz QPO frequencies, ν 2 and ν 1, are linearly correlated, ν 2 = 1 + B , with the slope A < 1.5, i.e., the frequencies definitely are not in a 1.5 ratio. In this contribution we show that when considered jointly on a frequency‐frequency plot, the data for the twin kHz QPO frequencies in several (as opposed to one) neutron stars uniquely pick out a certain preferred frequency ratio that is equal to 1.5 for the six sources examined so far. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We show in this article that charged fluid with pressure derived by Bijalwan (Astrophys. Space. Sci. doi:, 2011a) can be used to model classical electron, quark, neutron stars and pulsar with charge matter, quasi black hole, white dwarf, super-dense star etc. Recent analysis by Bijalwan (Astrophys. Space. Sci., 2011d) that all charged fluid solutions in terms of pressure mimic the classical electron model are partially correct because solutions by Bijalwan (Astrophys. Space. Sci. doi:, 2011a) may possess a neutral counterpart. In this paper we characterized solutions in terms of pressure for charged fluids that have and do not have a well behaved neutral counter part considering same spatial component of metric e λ for neutral and charged fluids. We discussed solution by Gupta and Maurya (Astrophys. Space Sci. 331(1):135–144, 2010a) and solutions by Bijalwan (Astrophys. Space Sci. doi:, 2011b; Astrophys. Space Sci. doi:, 2011c; Astrophys. Space Sci., 2011d) such that charged fluids possess and do not possess a neutral counterpart as special cases, respectively. For brevity, we only present some analytical results in this paper.  相似文献   

4.
利用“慧眼”(Hard X-ray Modulation Telescope, Insight-HXMT)卫星在2017年9月对黑洞候选体MAXI J1535-571的观测数据,研究了该源在爆发期内的时变现象.当源处于不同的爆发谱态时,功率密度谱的谱型存在明显差异.在硬中间态,有明显的限带噪声(band-limited noise)成分和QPO (Quasi-Periodic Oscillation)成分.分析结果表明:低频限带噪声的特征频率随能量的变化呈现正相关,即软能段光子的特征频率小于硬能段光子的特征频率. 0.1–0.5 Hz频率区间的限带噪声RMS (Root Mean Square)谱在硬中间态和软中间态均出现峰值,且在高能端存在差异,可能是主导噪声RMS的能谱成分占比不同.当谱态由硬中间态过渡到软中间态时, C型QPO的RMS谱保持相似趋势,但限带噪声RMS谱存在谱态依赖现象,暗示着噪声和QPO有不同的起源机制.  相似文献   

5.
Significant (marginal) detections of periodic signals have been recently reported in 3 (4) Active Galactic Nuclei. Three of the detections were obtained from long EUVE light curves of moderate-luminosity Seyfert galaxies; the fourth was discovered in Chandra data from the low-luminosity Seyfert 1 galaxy NGC 4395. When compared with Cyg X-1, I find that the period is related to the luminosity as PL2/3 rather than the expected one-to-one relationship. This result might be explained if the QPO is associated with the inner edge of the optically thick accretion disk, and the inner-edge radius depends on the source luminosity (or black hole mass). A discussion of uncertainties in the period detection methodology is also discussed.  相似文献   

6.
We report on a comprehensive analysis of the kilohertz (≥300 Hz) quasi-periodic oscillations (kHz QPOs) detected from the neutron star low-mass X-ray binary 4U 0614+09 with the Rossi X-ray Timing Explorer. With a much larger data set than previously analysed (all archival data from 1996 February up to 2007 October), we first investigate the reality of the 1330 Hz QPO reported by van-Straaten et al. This QPO would be of particular interest since it has the highest frequency reported for any source. A thorough analysis of the same observation fails to confirm the detection. On the other hand, over our extended data set, the highest QPO frequency we measure for the upper kHz QPO is at ∼1224 Hz; a value which is fully consistent with the maximum values observed in similar systems. Secondly, we demonstrate that the frequency dependence of the quality factor  ( Q =ν/Δν)  and amplitude of the lower and upper kHz QPOs follow the systematic trends seen in similar systems. In particular, 4U 0614+09 shows a drop of the quality factor of the lower kHz QPO above ∼700 Hz. If this is due to an approach to the innermost stable circular orbit, it implies a neutron star mass of  ∼1.9 M  . Finally, when analysing the data over fixed durations, we have found a gap in the frequency distribution of the upper QPO, associated with a local minimum of its amplitude. A similar gap is not present in the distribution of the lower QPO frequencies, suggesting some cautions when interpreting frequency ratio distributions, based on the occurrence of the lower QPO only.  相似文献   

7.
The cosmological distance ladder crucially depends on classical Cepheids (with P=3–80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period–luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P≳80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ∼7.2 to 9.2 dex. We find that their location in the colour-magnitude (VI,V) diagram as well as their Wesenheit (VI) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P≲80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (Astrophys. J. 695:874, 2009). Using the whole sample, we find that ULP Cepheids lie around a WP relation similar to that of the LMC, although with a large spread (∼ 0.4 mag).  相似文献   

8.
Recent studies of NOAA active region 10953, by Okamoto et al. (Astrophys. J. Lett. 673, 215, 2008; Astrophys. J. 697, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood (Astrophys. J. Lett. 716, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto et al. (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.  相似文献   

9.
We present a detailed study of the 5-Hz quasi-periodic oscillation (QPO) recently discovered in the bright X-ray transient and black hole candidate (BHC) GRS     (Borozdin & Trudolyubov) during a Rossi X-ray Timing Explorer observation taken on 1996 March 31. In total 6.6 ksec of on-source data were obtained, divided in two data sets of 3.4 and 3.2 ksec which were separated by ∼2.6 ksec. The 5-Hz QPO was only present during the second data set. The QPO increased in strength from below 2 per cent rms amplitude for photon energies below 4 keV to ∼5 per cent rms amplitude for energies above 10 keV. The soft QPO photons (below 5 keV) lagged the hard ones (above 10 keV) by almost 1.5 rad. Besides the QPO fundamental, its first overtone was detected. The strength of the overtone increased with photon energy (from < 2 per cent rms below 5 keV to ∼8 per cent rms above 10 keV). Although limited statistics did not allow for an accurate determination of the lags of the first overtone, indications are that also for this QPO the soft photons lagged the hard ones. When the 5-Hz QPO was not detected (i.e., during the first part of the observation), a broad noise component was found for photon energies below 10 keV but it became almost a true QPO (with a Q value of ∼1.9) above that energy, with a frequency of ∼3 Hz. Its hard photons preceded the soft ones in a way reminiscent of the 5-Hz QPO, strongly suggesting that both features are physically related. We discuss our finding in the framework of low-frequency QPOs and their properties in BHCs.  相似文献   

10.
2005年11月XMM-Newton望远镜对窄线赛弗特星系ESO 113-G010进行了长达100 ks的观测.采用Lomb-Scargle周期图(LSP)法和加权小波Z变换(Weighted Wavelet Z-transform,WWZ)两种方法对数据进行分析,发现存在着~2.24 11和~4.09 h准周期振荡(Quasi-Periodic Oscillation,QPO),其置信度分别为7.3σ和4.8σ.这两个QPO信号的周期具有大约1:2 (1:1.83)的关系.在该源的其他的观测中并没有发现QPO信号,表明这是一种暂现现象.ESO 113-G010中心黑洞的质量MBH和其QPO频率f_(QPO)满足已知的从恒星级黑洞到超大质量黑洞的质量与QPO频率之间的对数线性关系.该源的能谱分析显示在1 keV以下有软X射线超的现象.  相似文献   

11.
Sérsic (Atlas de Galaxias Australes, Observatorio Astronómico, 1968) generalized the de Vaucouleurs law which follows the projected (observed) one dimensional radial profile of elliptical galaxies closely and Dehnen (Mon. Not. R. Astron. Soc. 265:250, 1993) proposed an analytical formula of the 3-dimensional light distributions whose projected line profile resembles the de Vaucouleurs law. This paper is involved to recover the Dehnen model and generalize the model to account for galaxy elliptical shapes by means of curvilinear coordinate systems and employing a symmetry principle. The symmetry principle maps an orthogonal coordinate system to a light distribution pattern. The coordinate system for elliptical galaxy patterns turns out to be the one which is formed by the complex-plane reciprocal transformation Z=1/W. The resulting spatial (3-dimensional) light distribution is spherically symmetric and has infinite gradient at its center, which is called spherical-nucleus solution and is used to model galaxy central area. We can make changes of the coordinate system by cutting out some column areas of its definition domain, the areas containing the galaxy center. The resulting spatial (3-dimensional) light distributions are axisymmetric or triaxial and have zero gradient at the center, which are called elliptical-shape solutions and are used to model global elliptical patterns. The two types of logarithmic light distributions are added together to model full elliptical galaxy patterns. The model is a generalization of the Dehnen model. One of the elliptical-shape solutions permits realistic numerical calculation and is fitted to all R-band elliptical images from Frei et al. (Astron. J. 111:174, 1996) galaxy sample. The fitting is satisfactory. This suggests that elliptical galaxy patterns can be represented in terms of a few basic parameters.  相似文献   

12.
We have produced the colour–colour diagram of all the observations of 4U 1728–34 available in the Rossi X-ray Timing Explorer public archive (from 1996 to 2002) and found observations filling in a previously reported 'gap' between the island and the banana X-ray states. We have made timing analysis of these gap observations and found, in one observation, two simultaneous kHz quasi-periodic oscillations (QPOs). The timing parameters of these kHz QPOs fit in the overall trend of the source. The 'lower' kHz QPO has a centroid frequency of ∼308 Hz. This is the lowest 'lower' kHz QPO frequency ever observed in 4U 1728–34. The peak frequency separation between the 'upper' and the 'lower' kHz QPO is  Δν= 274 ± 11 Hz  , significantly smaller than the constant value of  Δν∼ 350 Hz  found when the 'lower' kHz QPO frequency is between ∼500 and 800 Hz. This is the first indication in this source for a significant decrease of kHz QPO peak separation towards low frequencies. We compare the result briefly to theoretical models for kHz QPO production.  相似文献   

13.
We have obtained Bianchi type-III cosmological model with strange quark matter attached to the string cloud in general relativity. For solving the Einstein’s field equations the relation [C=A n ] between metric coefficients C and A is used. Also, some physical and kinematic properties of the model are discussed.The results are analogous to results obtained by Yilmaz (Gen. Rel. Grav. 38:1397–1406, 2006).  相似文献   

14.
Rahaman et al. (Astrophys. Space. Sci. 331:191–197, 2010) discussed some classical electron models (CEM) in general relativity. Bijalwan (Astrophys. Space. Sci. 334:139–143, 2011) present a general exact solution of the Einstein-Maxwell equations in terms of pressure. We showed that charged fluid solutions in terms of pressure are not reducible to a well behaved neutral counter part for a spatial component of metrice λ . Hence, these solutions represent an electron model in general relativity. We illustrated solutions in terms of pressure briefly with de-Sitter equation of state and charged analogues of Kohler Chao interior solution as a special cases.  相似文献   

15.
This paper responds to points made by Low (Solar Phys. 2010. doi:) with regard to the Parker problem as formulated in Craig and Sneyd (Solar Phys. 232, 41, 2005). We first point out that, since Low focuses mainly on interpreting approximate linearized solutions to the Parker problem, his approach cannot address key issues relating to the finite amplitude stability and dynamic accessibility of potential equilibria. Further difficulties are shown to surround Low’s assertion that non-linear equilibria derived by magneto-frictional relaxation of the Parker problem should be discounted. We conclude that both linear and non-linear approaches to the Parker problem appear remarkably consistent: they demonstrate the development of smooth 3D equilibria as opposed to the routine collapse to singular current sheets.  相似文献   

16.
We report results from a spectral and timing analysis of M82 X-1, one of the brightest known ultraluminous X-ray sources. Data from a new 105-ks XMM–Newton observation of M82 X-1, performed in 2004 April, and of archival RossiXTE observations are presented. A very soft thermal component is present in the XMM spectrum. Although it is not possible to rule out a residual contamination from the host galaxy, modelling it with a standard accretion disc would imply a black hole (BH) mass of  ≈103 M  . An emission line was also detected at an energy typical for fluorescent Fe emission. The power density spectrum of the XMM observation shows a variable Quasi-Periodic Oscillation (QPO) at frequency of 113 mHz with properties similar to those discovered by Strohmayer and Mushotzky. The QPO was also found in seven archival RXTE observations, that include those analysed by Strohmayer and Mushotzky, and Fiorito and Titarchuk. A comparison of the properties of this QPO with those of the various types of QPOs observed in Galactic black hole candidates strongly suggests an association with the type-C, low-frequency QPOs. Scaling the frequency inversely to the BH mass, the observed QPO frequency range (from 50 to 166 mHz) would yield a BH mass anywhere in the interval few tens to  1000  M  .  相似文献   

17.
Wolff (Astrophys. J. 193, 721, 1974) introduced the concept of g-mode coupling within the solar interior. Subsequently, Wolff developed a more quantitative model invoking a reciprocal interaction between coupled g modes and burning in the solar core. Coupling is proposed to occur for constant values of the spherical harmonic degree [] creating rigidly rotating structures denoted as sets(). Power would be concentrated near the core and the top of radiative zone [RZ] in narrow intervals of longitude on opposite sides of the Sun. Sets() would migrate retrograde in the RZ as function of and their intersections would deposit extra energy at the top of the RZ. It is proposed that this enhances sunspot eruptions at particular longitudes and at regular time intervals. Juckett and Wolff (Solar Phys. 252, 247, 2008) detected this enhancement by viewing selected spherical harmonics of sunspot patterns within stackplots twisted into the relative rotational frames of various sets(). In subsequent work, the timings of the set() intersections were compared to the sub-decadal variability of the sunspot cycle. Seventeen sub-decadal intersection frequencies (0.63 – 7.0 year) were synchronous with 17 frequencies in the sunspot time-series with a mean correlation of 0.96. Six additional non-11-year frequencies (periods of 8.0 to 28.7 year) are now shown to be nearly synchronous between sunspot variability and the model. Two additional intersections have the same frequency as the solar cycle itself and peak during the rising phase of the solar cycle. This may be partly responsible for cycle asymmetry. These results are evidence that some of the solar-cycle variability may be attributable to deterministic components that are intermixed with a broad-spectrum stochastic and long-term chaotic background.  相似文献   

18.
Recently, Bijalwan (Astrophys. Space Sci. doi:, 2011) discussed all important solutions of charged fluid spheres with pressure and Gupta et al. (Astrophys. Space Sci. doi:, 2010) found first closed form solutions of charged Vaidya-Tikekar (V-T) type super-dense star. We extend here the approach evolved by Bijalwan (Astrophys. Space Sci. doi:, 2011) to find all possible closed form solutions of V-T type super-dense stars. The existing solutions of Vaidya-Tikekar type charged fluid spheres considering particular form of electric field intensity are being used to model massive stars. Infact at present maximum masses of the star models are found to be 8.223931M Θ and 8.460857M Θ subject to ultra-relativistic and non-relativistic conditions respectively. But these stars with such are large masses are not well behaved due to decreasing velocity of sound in the interior of star. We present new results concerning the existence of static, electrically charged perfect fluid spheres that have a regular interior. It is observed that electric intensity used in this article can be used to model superdense stars with ultrahigh surface density of the order 2×1014 gm/cm3 which may have maximum mass 7.26368240M Θ for ultra-relativistic condition and velocity of sound found to be decreasing towards pressure free interface. We solve the Einstein-Maxwell equations considering a general barotropic equation of state with pressure. For brevity we don’t present a detailed analysis of the derived solutions in this paper.  相似文献   

19.
We have developed a new approach to modeling the acoustic-gravity wave (AGW) radiation from bolide sources. This first effort involves entry modeling of bolide sources that have available satellite data through procedures developed in ReVelle (Earth Moon Planets 95, 441–476, 2004a; in: A. Milani, G. Valsecchi, D. Vokrouhlicky (eds) NEO Fireball Diversity: Energetics-based Entry Modeling and Analysis Techniques, Near-earth Objects: Our Celestial Neighbors (IAU S236), 2007b). Results from the entry modeling are directly coupled to AGW production through line source blast wave theory for the initial wave amplitude and period at (at 10 blast wave radii and perpendicular to the trajectory). The second effort involves the prediction of the formation and or dominance of the propagation of the atmospheric Lamb, edge-wave composite mode in a viscous fluid (Pierce, J. Acoust. Soc. Amer. 35, 1798–1807, 1963) as a function of the source energy, horizontal range and source altitude using the Lamb wave frequency that was deduced directly during the entry modeling and that is used as a surrogate for the source energy. We have also determined that Lamb wave production by bolides at close range decreases dramatically as either the source energy decreases or the source altitude increases. Finally using procedures in Gill (Atmospheric-Ocean Dynamics, 1982) and in Tolstoy (Wave Propagation, 1973), we have analyzed two simple dispersion relationships and have calculated the expected dispersion for the Lamb edge-wave mode and for the excited, propagating internal acoustic waves. Finally, we have used the above formalism to fully evaluate these techniques for four large bolides, namely: the Tunguska bolide of June 30, 1908; the Revelstoke bolide of March 31, 1965; the Crete bolide of June 6, 2002 and the Antarctic bolide of September 3, 2004. Due to page limitations, we will only present results in detail for the Revelstoke bolide.  相似文献   

20.
In this paper we report on further observations of the third and fourth kilohertz quasi-periodic oscillations (QPOs) in the power spectrum of the low-mass X-ray binary (LMXB) 4U 1636−53. These kilohertz QPOs are sidebands to the lower kilohertz QPO. The upper sideband has a frequency  55.5 ± 1.7 Hz  larger than that of the contemporaneously measured lower kilohertz QPO. Such a sideband has now been measured at a significance  >6σ  in the power spectra of three neutron-star LMXBs (4U 1636−53, 1728−34 and 1608−52). We also confirm the presence of a sideband at a frequency ∼55 Hz less than the frequency of the lower kilohertz QPO. The lower sideband is detected at a 3.5σ level only when the lower kilohertz QPO frequency is between 800 and 850 Hz. In that frequency interval, the sidebands are consistent with being symmetric around the lower kilohertz QPO frequency. The upper limit to the rms amplitude of the lower sideband is significantly lower than that of the upper sideband for lower kilohertz QPO frequencies >850 Hz. Symmetric sidebands are unique to 4U 1636−53. This might be explained by the fact that lower kilohertz QPO frequencies as high as 800–850 Hz are rare for 4U 1728−34 and 1608−52. Finally, we also measured a low-frequency QPO at a frequency of ∼43 Hz when the lower kilohertz QPO frequency is between 700 and 850 Hz. A similar low-frequency QPO is present in the power spectra of the other two systems for which a sideband has been observed. We briefly discuss the possibility that the sideband is caused by Lense–Thirring precession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号