首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The longitudinal fast solitary waves induced by weakly relativistic positron showers of astrophysical origin are studied in a plasma system contaminated with some massive impurities in presence of superthermal effects. The superthermal effects are due to the high energy electrons. The impurities are dust corpuscles with positive and negative charges. It is noticed that increase in the kappa parameter of electrons and relativistic streaming factor of weakly relativistic positron shower, negative dust concentration invoke an enhancement in the strength of solitary wave. On the other hand increase in the shower’s temperature as well as positive dust concentration diminish the solitary hump strength. It is worth to mention that only hump type compressive fast solitary waves are predicted by our model, for the given set of plasma parameters, because the convective coefficient of the nonlinear governing equation for solitary wave remains positive in considered regime of interaction for plasma and positron shower. Our calculations in linear regime predict both the fast and slow positron shower induced longitudinal, electrostatic perturbations. Our results may be of importance in understanding the nonlinear propagation of waves in doped astrophysical superthermal plasmas with relativistic positron showers.  相似文献   

2.
Existence and characteristics of ion-acoustic (IA) wave modulation are studied in a plasma with two-temperature electron satisfying kappa distribution. Based on the multiple time scales perturbation, a nonlinear Schrödinger equation (NLS) is derived. Similar to the case of double Maxwellian electrons, both polarities of envelope soliton can exist over restricted ranges of the fractional hot electron density ratio and two-temperature superthermal electrons. The transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in the presence of cool and hot superthermal electrons. It is shown that the small values of the hot electron populations leads to shrinking the modulation instability region. It is also found the instability growth rate reduces due to the presence of hot electrons. The result of present investigation contributes to the physics of wave modulation in Saturn’s magnetosphere where two-temperature electrons with kappa distribution exist.  相似文献   

3.
A rigorous theoretical investigation is carried out in analyzing the excitation of electrostatic ion acoustic (IA) solitary wave (SW) structures in two dimensional negative ion magneto-plasmas with superthermal electrons (following κ type distribution). The Zakharov-Kuznetsov (ZK) equation is derived by employing the well known reductive perturbation method, and the analytical solution of ZK equation assists to find out the SW profiles along with their properties. The consequences of different plasma parameters (regarding our considered plasma system) variation on SW structures has been studied. It is found that magnetic field intensity, superthermal parameter κ and temperature of positive and negative ions as well as their densities significantly modify the basic characteristics (amplitude, width, etc.) of the SW waves. A comparison of the SW structures is also presented when the electrons are Maxwellian to when they are superthermal. The relevance of the findings of this work with astrophysical plasmas is briefly pointed out.  相似文献   

4.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

5.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

6.
A theoretical model is presented to investigate the existence, formation, and possible realization of nonlinear envelope ion acoustic solitary waves which accompany collisionless electron-positron-ion plasmas with high-energy electrons and positrons (represented by kappa distribution). By employing the reductive perturbation method, the hydrodynamic model and the Poisson equation are reduced to nonlinear Schr?dinger equation. The effects of the superthermal parameters, as well as ion-to-electron temperature ratio on the propagation and stability of the envelope solitary waves are examined. The superthermal parameters (ion-to-electron temperature ratio) give rise to instability (stability) of the solitary excitations, since the instability window is strongly modified. Finally, the present results should elucidate the excitation of the nonlinear ion-acoustic solitary wave packets in superthermal electron-positron-ion plasmas, particularly in interstellar medium.  相似文献   

7.
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa distributed) cool and hot electrons have been investigated using non-perturbative approach. We have transformed basic model equations to an ordinary differential equation involving electrostatic potential. Then we have applied the bifurcation theory of planar dynamical systems to the obtained equation and we have proved the existence of solitary wave solutions and periodic wave solutions. We have derived two exact solutions of solitary and periodic waves depending on the parameters. From the solitary wave solution and periodic wave solution, we have shown the effects of density ratio p of cool electrons and ions, spectral index κ, and temperature ratio σ of cool electrons and hot electrons on characteristics of ion acoustic solitary and periodic waves.  相似文献   

8.
Properties of fully nonlinear electron-acoustic solitary waves in an unmagnetized and collisionless electron-positron-ion plasma containing cold dynamical electrons, superthermal electrons and positrons obeying Cairns’ distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal electrons, the superthermal positron component can provide the restoring force to the cold inertial electrons to excite electron-acoustic waves. Moreover, superthermal electron and positron populations seem to enhance the electron acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of electron acoustic soliton structures in the space and laboratory plasmas with nonthermal electrons and positrons.  相似文献   

9.
Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma consisting of negatively charged mobile dust, nonextensive ions following nonextensive q-distribution and two distinct temperature superthermal electrons following superthermal kappa distribution each, is investigated by employing lower and higher order nonlinear equations, namely the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV) and the Gardner equations. The characteristic features of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two superthermal temperature electrons and ions nonextensivity on the basic characteristics of DA K-dV, mK-dV and Gardner solitons have also been investigated. It has been found that the DA Gardner solitons exhibit either negative or positive potential solitons only for q<q c where, q c is the critical value of the nonextensive parameter q. The possible applications of our results in understanding the localized nonlinear electrostatic structures existing in solar atmosphere, Saturn’s magnetosphere etc. (where the tails of the high energetic particles at different temperatures follow power-law like distribution) are also briefly discussed.  相似文献   

10.
A theoretical investigation has been made on the head-on collision of cylindrical and spherical electron-acoustic solitary waves in a non-Maxwellian plasma composed of stationary ions, cold fluid electrons, and superthermal electrons obeying κ velocity distribution. By using the extended Poincaré-Lighthill-Kuo perturbation method, the effects of plasma parameters, especially the superthermal effect on the interaction of colliding solitary waves are studied. It is found that there are both positive and negative colliding phase shifts for each colliding wave in its traveling direction. Also, it is shown that the solitary waves received the largest colliding phase shifts in spherical geometry, followed by the cylindrical and planar geometries.  相似文献   

11.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of superthermal electrons and warm ions are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries (KdV) equations for IAWs to study the propagation of two-solitons. The presence of superthermally distributed electrons is shown to influence the propagation of two-solitons in nonplanar geometry.  相似文献   

12.
Distributions of plasma with excess numbers of superthermal electrons are common in space environments and double layer (DL) is one of the very important electrostatic nonlinear wave structures ubiquitous in plasma systems. Based on the modified Zakharov equations, the DLs are studied in the strong turbulent plasmas with Kappa distributed electrons. It appears that in the strong turbulence regime, the presence of additional superthermal particles does not make qualitative changes on the DLs behavior, but modify the thicknesses of the DLs.  相似文献   

13.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

14.
Ion-acoustic (IA) solitons in a collisionless plasma consisting of positive and negative ions and superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries (K-dV) and modified Korteweg-de Vries (mK-dV) equations. It is found that both compressive and rarefactive solitons can be propagated in this system. Also it is shown that at critical concentration of positive ions mK-dV solitons coexist. The effects of spectral index kappa, positive to negative ion density ratio and mass ratio of positive to negative ions on IA solitons structure are also discussed.  相似文献   

15.
Linear and nonlinear dust drift waves are investigated in the presence of kappa distributed electrons and ions. The dispersion characteristics of linear waves show that the phase velocity decreases with the inclusion of highly energetic particles in the tail of the distribution. In the nonlinear regime, a nonlinear partial differential equation is obtained in the long wave length limit. A stationary solution of this equation in the form of solitary waves is discussed and noticed that the amplitude of the solitary pulse decreases with the increase of superthermal particle’s effect, and its width expands. Further, it is found that speed limit of the nonlinear structures is also modified in the non-Maxwellian plasma. Theoretically obtained results are applied to Saturn’s’ dusty plasma environment. It is also pointed out that the present results can be helpful for further understanding of space plasmas.  相似文献   

16.
The effects of dust polarity and superthermal electrons are incorporated in the study of dust ion-acoustic (DIA) solitary waves (SWs) as well double layers (DLs) in a dusty plasma containing warm adiabatic ions, superthermal electrons, and arbitrarily (positively or negatively) charged immobile dust. Based on the energy-like integral equation, a new relationship between the localized electrostatic disturbances and dust polarity is derived. It is shown that there exists rarefactive SWs and DLs with qualitatively different structures in a way that depends on the population of superthermal electrons. As the electrons evolve their thermodynamic equilibrium, the localized structures are found with larger amplitude. It is also found that their amplitude increases (decreases) with the increase in the negative (positive) dust number density.  相似文献   

17.
Ion acoustic shock waves (IASWs) are studied in a plasma consisting of electrons, positrons and ions. Boltzmann distributed positrons and superthermal electrons are considered in the plasma. The dissipation is taken into account the kinematic viscosity among the plasma constituents. The Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived by reductive perturbation method. Shock waves are solutions of KdV–Burgers equation. It is observed that an increasing positron concentration decreases the amplitude of the waves. Furthermore, in the existence of the kinematic viscosity among the plasma, the shock wave structure appears. The effects of ion kinematic viscosity (η 0) and the superthermal parameter (k) on the ion acoustic waves are found.  相似文献   

18.
Our objective here is to investigate a strongly coupled dusty plasma system with the presence of polarization force (PF). This plasma consists of superthermal electrons, Maxwellian ions, and negatively charged dust grains. The nonlinear propagation of dust-acoustic (DA) waves in such dusty plasma system has been theoretically investigated by employing the reductive perturbation method. The Burgers’ and K-dV equations have been derived to and numerically analyzed. It has been found that the dust-acoustic shock and solitary waves exist associated with a negative potential only, and that the effect of the dust fluid temperature significantly modifies the basic properties (amplitude and width) of such nonlinear waves’ potential structures. We hope that the results of our present investigation should help us in understanding the localized electrostatic disturbances in space and laboratory strongly coupled dusty plasmas with superthermal electrons and polarization force.  相似文献   

19.
The type-I radio continuum may arise from the combination of two electrostatic waves, both directed nearly normal to the magnetic field. One wave, near the upper-hybrid frequency, is generated by gyroresonance with superthermal electrons and comes into equilibrium with these electrons. The other wave, at the lower-hybrid frequency, is generated by the loss-cone instability of trapped superthermal protons in those wave directions for which the lower-hybrid frequency is an exact multiple of the proton gyrofrequency. The brightness temperature of the continuum indicates both the energy of the superthermal electrons and the existance of at least a small number of superthermal protons.  相似文献   

20.
The properties of small but finite amplitude dust acoustic (DA) shock waves are studied in a charge varying dusty plasma with ions and electrons having kappa velocity distribution. We obtain the global Debye length including the influence of suprathermality effects and dust charge fluctuations. It is shown that the effects of suprathermality of ions/electrons and dust charge fluctuation significantly modify the basic properties of DA shock wave. We observe that only negative DA shock waves will be excited in this model. The amplitude of DA shock wave increases with deviation of electrons or ions from Maxwellian distribution via decrease of spectral index, κ j (j=i,e denotes, ions and electrons, respectively). Also, it is indicated that the amplitude and steepness of the shock front decreases with an increase in the ion temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号